SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) SANDHYA DEPT OF BOTANY. Lession 2018-19 B.Sc. I (SEMESTER I) MICROBIOLOGY AND PLANT PATHOLOGY (PAPER II) (BOT 102) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|--|--|--|---|---|---------------------------------| | JULY | UNIT I Classification of living world (Whittakar's five kingdom classification) | Classification, Prokaryotes, Eukaryotes, Cell structure | Group
discussion,
Lecture | | Knowledge Based -What is the need of classification? -Explain Whittakar's five kingdom | Knowledge60
Understanding-30 | | | Bacteria- structure,
reproduction (Binary fission,
transformation, conjugation
& transduction). Gram
staining, economic and
biological importance | Prokaryotic cell
structure, Reproduction,
Gram positive and Gram
negative Bacteria,
Economic importance of
bacteria | PPT, Lecture,
Diagrams,
Quiz,
Demonstration | Relate the
structure and
nature of
micro-
organisms | Understanding Based -Identify the types of bacteria on the basis of gram stainingRelate the role of bacteria in | Higher Order-10 | | | General features of:
Rickettsias, Archaebacteria
and Actinomycetes | Comparison of different groups of bacteria | Group
discussion,
Lecture, Quiz | | agriculture and industry? Higher Order Thinking Skills Based | | | AUGUST | UNIT II Virus- Structure, multiplication and transmission of virus (TMV | Capsid, Lysis,
Lysogeny,
Bacteriophage | Diagrams,
Pictures,
Lecture | Understand the etiology and epidemiology of plant | -Suggest control
measures for plant
diseases caused by
fungi. | De | | & Bacteriophage) | | | diseases | | |---|--|---|----------|--| | Mycoplasma- structure and economic importance. Phytoplasma, Little leaf of brinjal | Pleomorphic, Disease
symptoms, Pathogenic
aspect of mycoplasma | Diagrams,
Pictures,
Lecture, quiz | 8 | -Compare the methods of parasexual reproduction in bacteria. | | A general account of diseases caused by plant pathogens: Bacterial diseases- Citrus canker, Tundu disease of wheat Viral disease- Tobacco | Causal organism, Disease symptoms, Control measures | Group
discussion,
Diagrams,
Pictures,
Specimens,
Lecture | | | Host, Parasite, Necrosis, Etiology, Epidemiology, Control measures Hypertrophy, Rust, Mildew Assignment Diagrams, Pictures, Specimens, Lecture Diagrams, Pictures, Specimens, Lecture Predict the measures to minimize the adverse effect of pathogens crops on commercial control PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER SEPTEMBER- **NOVEMBER** mosaic UNIT III Host parasite interaction, diseases caused by fungi Important symptoms of plant Disease cycle and control of: Fungal diseases- White rust disease of bajra, Loose Smut of crucifers, Green ear of wheat, Red rot of sugarcane, Tikka disease of groundnut Department of Botany Sophia Gais' College (Autonomous), Ajmer ## B.Sc. II (SEMESTER III) #### ANATOMY OF ANGIOSPERMS (PAPER I) (BOT-301) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) **COURSE PLAN** Credit: 03 | Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage | |--------|---|--|--|---|---|-----------------| | JULY | UNIT I The basic body plan of a flowering plant – Modular type of growth | Meristem, node,
internode, leaf
primordium, metamer,
module | Diagrams, Group discussion, Demonstration, Lecture, Quiz | | Knowledge Based -What is a metamer? -Explain | Knowledge50 | | | The shoot system: Shoot apical meristem and its histological organization. Structure of primary shoot in monocotyledons and dicotyledons. | Theories of apical
meristem, dermal
tissue, ground tissue,
vascular tissue | Diagrams, Section cutting, Lecture, Self practice | Anticipate plant
structure at
microscopic
level with the
major goals of
understanding
the structure | growth in a dicot shoot. Understanding Based -Compare the structure of | Higher Order-15 | | | The root system: Root apical meristem, Differentiation of primary and secondary tissues and their roles, Structural modification for storage, respiration, reproduction and for interaction with microbes | Theories of apical meristem, dermal tissue, ground tissue, vascular tissue, storage root, aerial root, mycorrhiza, root nodule | Diagrams, Section cutting, Lecture, Assignment | common to all
vascular plants | sunflower and cucurbita stemIllustrate the development of leaf. Higher Order Thinking Skills Based | Le dhy) | | AUGUST | UNIT II Cambium and its functions, Formation of secondary xylem, A general account of wood in relation to conduction of water | Secondary growth,
structure and function
of xylem | Diagrams,
Section cutting,
Lecture | Explain the developmental | -Relate the structure and function of elements of xylem. | | | | and minerals Characteristics of growth rings, Sap wood and heart wood, Secondary phloem: structure and function, | Annual rings, elements of phloem | Diagrams,
Section cutting,
Lecture | processes that
leads to mature
anatomy and
anomalous
growth in plants | -With a suitable
example explain
phloem wedge. | | |------------------------|--|---|--|---|--|--| | | Periderm. Anomalous growth: primary (<i>Triticum</i> , <i>Nyctanthes</i>) and secondary (<i>Salvadora</i> , <i>Bignonia</i> , <i>Dracaena</i>) | Cork cambium,
lenticels, cortical
bundles, phloem islands | Diagrams,
Section cutting,
Lecture | | | | | SEPTEMBER-
NOVEMBER | UNIT III Leaf: Origin and development | Primordium, meristem, | Diagrams,
Lecture | Relate the internal structure and | | | | | Internal structure in relation to photosynthesis and water loss | Mesophyll, stomata,
monocot and dicot leaf | Diagrams,
Section cutting,
Lecture | adaptations to water stress | | | | 0 0 | Adaptations to water stress,
Sensecence and abscission | Xerophytes, abscission zone | Diagrams,
Lecture | | 1 Lesly | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Botany Sophia Girls' College (Autonomous), Ajmer ## B.Sc. III (SEMESTER V) #### PLANT PHYSIOLOGY AND METABOLISM (PAPER I) (BOT-501) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|--|--|---|--|--|--| | JULY | UNIT I Plant-water relations: Importance of water to plant life, Physical properties of water, diffusion and osmosis, Absorption, transport of water, Transpiration: physiology of stomata | Hydrogen bond,
cohesion, adhesion,
DPD, osmosis,
plasmolysis,
transpiration | Diagrams,
Lecture,
Demonstration,
group discussion | Interpret the fundamental | Knowledge Based -What is a osmosis? -Write a note on source-sink relationship. Understanding Based -Compare | Knowledge40
Understanding-40
Higher Order-20 | | | Transport of organic
substances: Mechanism of
phloem transport, Source-sink
relationship | Girdling, source, sink, hydrostatic pressure | Diagrams,
Lecture, group
discussion | concepts of
plant
physiology and
enzymology | diffusion and osmosisRelate action and absorption spectrum. | Aard | | | Basics of enzymology: Nomenclature, Characteristics, Concept of holoenzyme, apoenzyme, coenzyme and cofactors, Mechanism of action, Michaelis-Menten | Catalyst, specificity, classification, coenzyme, activation energy, K _m value | Diagrams,
Lecture,
Demonstration | | Higher Order Thinking Skills Based -Asses the significance of K _m valueApply chemosmotic | | | 7 | £ 1 | | |------|-----|-------| | | t | | | HEEK | 11 | WOOM. | | | equation and its significance,
Regulation of enzyme activity | | | | coupling
hypothesis to
photophosphoryla
tion. | | |------------------------|---|--|---|--|--|---------| | AUGUST | UNIT II Photosynthesis: Pigments. Light harvesting complexes. Absorption and action spectra, Enhancement effect. Concept of two photosystems. Z- scheme. Photophosphorylation, | Photosystem, red drop,
Z-scheme, light
reaction, cyclic and non
cyclic ETC, synthesis
of ATP | PPT, Diagrams,
Lecture,
Demonstration | | | | | | Calvin cycle. C ₄ pathway,
CAM plants. Photorespiration | Dark reaction,
reduction of CO ₂ , C ₂
cycle | PPT, Diagrams,
Lecture, | Compare photosynthesis and respiration | | | | | Respiration: ATP-the biological energy currency, Aerobic and anaerobic respiration. Kreb's cycle, Electron transport mechanism (chemi-osmotic theory). Oxidative phosphorylation, Pentose phosphate pathway | Glycolysis, TCA cycle, phosphorylation, HMP pathway | Diagrams,
Lecture, group
discussion | and topical | | | | SEPTEMBER-
NOVEMBER | UNIT III Mineral nutrition: Essential macro- and micro-elements, their role, Deficiency and | Macro- and micro-
elements, role in plants | Assignment, quiz | | | Londing | | | toxicity symptoms | | | Explain the process of | | | | | Nitrogen metabolism: Biology of nitrogen fixation, Importance of nitrate reductase and its regulation, Ammonia | Nitrate reduction, symbiotic N ₂ fixation, diazotrophs, leghaemoglobin, GOGAT pathway | Diagrams,
Lecture | nitrogen and
lipid
metabolism | | | | | assimilation. | | | | | | |-----|--|--------------------------------|---------------------------|----|-----|--| | | Lipid metabolism: Structure and function of lipids, Fatty acid biosynthesis, | Lipids, fats, glyoxylate cycle | Diagrams,
Lecture, PPT | | | | | 1 1 | β-oxidation, Storage and mobilization of fatty acids. | | * | /0 | Jus | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER 1 Department of Botany Sophia Girls' College (Autonomous), Ajmer ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) ## B.Sc. I (SEMESTER II) CELL BIOLOGY (PAPER II) (BOT 202) Min. Marks: 30(20 Ext;10 Int) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext; 10 Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|--|---------------------------------------|--|--|---------------------------------| | DECEMBER-
JANUARY | UNIT I Structure of Prokaryotic and Eukaryotic cell | Prokaryotes,
Eukaryotes, Cell
structure | Group
discussion,
Lecture | Illustrate
structure and
function of | Knowledge Based -Define nucleoidWhat is the function of vacuole? | Knowledge60
Understanding-30 | | | The cell envelopes: structure
and function of Plasma
membrane and Cell wall | Fluid mosaic model,
layers of cell wall | Lecture,
Diagrams,
Quiz, | cell and cell
organelles | Understanding Based -Summarize the function of ER. | Higher Order-10 | | | Structure and function of
cell organelles: Golgi body,
Endoplasmic reticulum,
Peroxisome, Vacuole,
Mitochondria, Chloroplast,
Ribosome and Centriole | Processing and packaging of proteins, microbodies, respiration, photosynthesis | Group
discussion,
Lecture, Quiz | | function of ERClassify chromatin on the basis of staining. Higher Order Thinking Skills Based -Analyse numerical changes in | 2.1 | | FEBRUARY | Nucleus: Structure and function of Nucleus and Nucleolus | Nuclear pore,
nucleoplasm, chromatin,
nuclear lamina | Diagrams, Pictures, Lecture | Describe
chromosome
organization
and
chromosome
alterations | chromosomesDo you agree that DNA replication is semi-discontinuous? Explain. | | | NI/ | | 7-1 | |------|---|--------| | 300 | 5 | | | | | | | | | | | | Z | - | | HEEK | | WINDOW | | 20 | 18 | -1 | 19 | |-----|----|----|----| | CC. | | | | | | | | | | | T | | |-------------|---------|------------------------------|--|-------------------------------|------------------|---------------------|---------| | | | Chromosome organisation: | Chromonema, | Diagrams, | | | | | | | Structure, Euchromatin and | chromomere, | Pictures, | | | | | | | Heterochromatin | kinetochore, chromatid, telomere | Lecture | | | | | | | Chromosomal alterations: | Deletion, Duplication, | Diagrams, | 1 | | | | | | Structural changes in | Translocation and | Lecture, | | | | | | | Chromosomes (Deletion, | Inversion, aneuploidy, | Assignment | | | | | | ł | Duplication, Translocation | euploidy | | | | | | | 1 | and Inversion), Numerical | | | | | | | | | Changes in Chromosomes: | | | | | | | | | [Aneuploidy (Monosomy, | | | | | | | | | Nullisomy, Trisomy, and | | | | | | | | | Tetrasomy), Euploidy | | | | , | | | | | (Monoploidy and | | | | | | | | | Polyploidy)] | | | | | | | | | UNIT III | Nucleoside, nucleotide,
double helix, semi- | PPT, Diagrams, | Correlate
DNA | | | | | | DNA: Structure, Types (A, | consevative, histone | Lecture | structure, cell | | | | 1 | MARCH | B, C and Z), Replication and | core | | cycle and cell | | | | 1 | | DNA-protein interaction | | | division | | | | | | (Nucleosome Model) | | | | | | | Ì | | Genetic code, Satellite and | Triplet codon, properties | Group | | | | | | | | of genetic code,
repetitive DNA | discussion,
Lecture, Quiz | | | | | | ۸ . | | Interphase, G ₁ , S, G ₂ , M | | | I have and | | | 0 | early | | phase, CDKs, prophase, | Group | | | 1 Shift | | Dr 1 | | 1 | metaphase, anaphase, | discussion,
Lecture, smear | | | Darry | | PRINCIF | - | | telophase | preperation | | 'Head | | | OPHIA GIRLS | COLLEGE | Meiosis, Significance. | = | proporation | | artment of Botany | | | (AUTONO) | MOUS) | | to the distribution | | | phia Girls' College | | | AJME | R | | The Male and | | (Au | tonomous), Ajmer | 1 | ## B.Sc. II (SEMESTER IV) ## REPRODUCTION IN FLOWERING PLANTS (PAPER II) (BOT-402) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM III
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage (%) | | |----------------------|--|--|--|---|--|---|--| | DECEMBER-
JANUARY | UNIT I Flower: Structure, Types of anther and pistil | Polyandrous,
Monoadelphous,
syngenesious, superior,
inferior, unilocular | Diagrams, Group discussion, Demonstration, Lecture, Quiz | Compare the | Knowledge Based -List the types of antherWhat is | Knowledge50
Understanding-35 | | | | Male gametophyte: Structure of anther, Microsporogenesis, Role of tapetum, Pollen germination and growth of pollen tube. | Monothecous,
dithecous, microspore,
pollen tetrads | Diagrams,
Permanent slide
Lecture, quiz | structure and
development of
male and female
gametophyte | sporopollenin? <u>Understanding</u> <u>Based</u> -Compare micro and megasporogensis. <u>Higher Order</u> | poropollenin? Inderstanding Cased Compare micro and mega- porogensis. | | | | Female gametophyte: Structure and types of ovule, Megasporogenesis, Organisation of embryo sac | Orthotropous,
anatropous, megaspore,
polygonum type,
synergids | Group discussion, Diagrams, Permanent slide, Lecture | | Thinking Skills Based -Justify the inability of a plant, producing | | | | FEBRUARY | UNIT II Types of pollination, Pollenpistil interaction | Self and cross
pollination, herkogamy,
heterostyly,
ornithophilly, exine,
stigma | Assignment,
Diagrams,
Lecture, Quiz | Illustrate
reproduction in
plants from
pollination to
embryogenesis | functional male
and female
gametes, to set
seeds.
-Explain the | | | | | Self incompatibility, Double fertilization | GSI, SSI, recognition-
rejection, syngamy,
triple fusion | Diagrams,
Lecture, group
discussion | | types of embry sac. | 0 | | | | Endosperm, Embryogenesis | Nuclear, cellular,
helobial endosperm,
proembryo | Diagrams,
Lecture, quiz | | | |-------|---|--|------------------------------------|---|------| | MARCH | UNIT III
Methods of Vegetative
propagation | Natural, artificial, cutting, layering, grafting | Assignment, group discussion | Understand the concept of latent life in plants | | | | Latent life-Dormancy:
Importance and types of seed
dormancy, overcoming seed
dormancy. | Primary and secondary
dormancy,
stratification, pre-
chilling, ripening | Demonstration,
Lecture, quiz | | | | | Parthenocarpy, Types of fruits | Caryopsis, capsule,
lomentum, berry, drupe,
cremocarp | Diagrams,
Lecture,
specimens | | ny L | So Veari PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Botany Sophia Girls' College (Autonomous), Ajmer ## B.Sc. III (SEMESTER VI) ## GENETICS AND BIOTECHNOLOGY OF PLANTS (PAPER II) (BOT-602) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|---|--|---|---|---------------------------| | DECEMBER-
JANUARY | ABER- Genetic inheritance: recessive, allele, numerical, | Lecture,
numerical, group
discussion | Deduce how genes function and how characters are Knowledge Based -Define linkageList the various physical mutagens. | | Knowledge40
Understanding-40
Higher Order-20 | | | | Linkage and linkage mapping,
Allelic and non-allelic
interactions | Linked genes, test
cross, back cross,
genotype, phenotype | Lecture,
numerical | inherited from
one generation
to the next | Understanding Based -Illustrate dominant epistasis. | | | | Gene expression: Transfer of genetic information-transcription, translation, Regulation of gene expression in prokaryotes and eukaryotes Central dogma, initiation, elongation, termination, attenuation, antitermination Diagrams, Lecture, group discussion | | -Explain
transcription.
Higher Order
Thinking Skills
Based | Jandh | | | | FEBRUARY | BRUARY Genetic variations: transvers | Mutagen, transition,
transversion, base
analogues, mismatch
repair | Lecture,
diagrams, quiz | Analyze the | -Appraise the role of Agrobacterium in genetic engineeringRecommend a | | | | Genetic engineering: Tools | rDNA, vector, marker | Lecture, | biotechnological
procedures for | technique of obtaining virus | | | and the same of th | | | | - Committee of the Comm | | |--|---|---|---|--|---------------------------------| | | and techniques of recombinant
DNA technology, Cloning
vectors, Genomic and cDNA
library, Polymerase Chain
Reaction | gene, plasmid, phage cDNA, | diagrams, quiz,
group discussion | modifying
living
organisms
according to
human purposes | free plants and haploid plants. | | MARCH | UNIT III Biotechnology: Definition, Basic aspects of plant tissue culture, Somatic hybridization- protoplast isolation, fusion and culture | Totipotency, culture,
nutrient medium,
sterilization, aseptic,
protoplast, somatic
hybrid, cybrid | Diagrams,
Lecture, group
discussion | Understand
basic aspects of
plant tissue | | | | Biology of Agrobacterium, Vectors for gene delivery and vectorless gene transfer | Ti plasmid, Ri plasmid,
T-DNA, opines,
electroporation, particle
gun delivery | Diagrams,
Lecture, group
discussion | culture | | | | biotechnology | Selectable and scorable marker, meristem culture, haploid culture,herbicide resistant | Lecture,
assignment | A | n shit | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Department of Botany Sophia Girls' College (Autonomous), Ajmer