COURSE PLAN (PHYSICS) U.G Programs 2020-21 B. Sc. I (SEMESTER I) ### **ELECTROMAGNETICS (PHY-102)** Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|--|---|--|--|--| | SEM I
August | UNIT I Scalars and Vectors: dot products, vector product, triple vector product, gradient of scalar field and its geometrical interpretation, divergence and curl of a vector field. Flux of vector field | Scalar and vector fields | Video Lecture
method,
problem solving
method, quiz | Tabulate
vector
properties and
theorems
related to it. | -What is vector field? -what do you mean by gradient and divergence? | Knowledge60
Understanding-30
Higher Order-10 | | AUGUST | Gauss's divergence theorem,
Stokes theorem. Gauss's Law and
its integral and differential form.
Coulomb's law in vacuum
expressed in vector form. | Theorems
related to scalar
and vector fields | Video Lecture
method, PPT,
problem solving
method, class
test | | divergence? | | | SEPTEMBER | UNIT II Electric field in matter: atomic and molecular dipoles, permanent dipole moment. Capacity of parallel plate capacitor with partially or completely filled dielectric, electric | Various boundary conditions. | Video Lecture
Method, PPT,
seminars, quiz,
numerical
solving method | Derive | Understanding
Based | | | | SEPTEMBER | displacement, Lorentz local field and Clausius Mossotti equation. Electrostatic field – conductors in electric field, Boundary conditions for potential and field at dielectric surface, Poisson's and Laplace's equations in Cartesian cylindrical and spherical polar coordinates (without derivation). | Electromagnetic
Induction | Demonstration
through
examples,
diagrams, PPT | Claussius
Mossoti
equation. | -Illustrate the electromagnetic inductionwhat do you mean by Dipole moment? | | |--------|--|---|---|--|--|--|--| | | OCTOBER | UNIT III Concept of magnetic field B and magnetic flux, Biot-Savart's law, B due to a straight current carryingconductor. Ampere circuital law (integral and differential form), Force on a current carrying wire and torque on a current loop in a magnetic field, Maxwell's equations (integral and differential form) and displacement current | Magnetic flux
and intensity of
magnetic field | Online Group
Discussion,
Video Lecture
method, problrm
solving | Classify Electrostatic properties of conducts and various boundary conditions. | Higher Order Thinking Skills Based - Derive Poisson's and Laplace equations. | *** | | Sophia | NOVEMBER-
DECEMBER
Head
Physics
Girls' College
mous), Aimer | Electromagnetic induction, Faraday law (its integral and differential form) Lenz's law, mutual & self inductance, Charging, discharging of condenser through resistance, rise and decay of current in LR circuit, decay constant, transient in LCR circuit | Electrostatic properties of conductors. | Video Lecture
Method, PPT,
quiz, numerical
solving method | | - Express the
Maxwell's equation
in their differential
form. | SA- Parl SOPMA GIRLS: COLLEGE JAUTONOMOUS) | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc. II (SEMESTER III) ELECTRONICS (PHY-301) Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|--|--------------------------------------|--|--|--|---| | SEM I
JULY | UNIT I Energy bands in solids, Intrinsic and extrinsic semiconductors, carrier mobility and electrical resistivity of semiconductors, photoconduction in semiconductors, solar cell, p-n junction diode and their characteristics. | Semiconductors | PPT, online
Quiz, Video
Lecture method,
Problem solving
method. | Describe
Zener diode
and its
function as a
voltage
regulator. | Knowledge Based - Explain types of semi conductors? Give example. -what are filters? | Knowledge—60
Understanding-30
Higher Order-10 | | JULY-
AUGUST | Zener and Avalanche Breakdown, Zener diode ,Zener diode as voltage regulator, Light emitting diode(LED), Photodiode, Solar cell, p-n junction as a rectifier, half wave and full wave rectifiers (with derivation), Filters (series inductor, Shunt capacitance, L-section or choke, pie and RC filter circuits. | Application of diode as a rectifier. | Video Lecture
method,
problem solving
method, Quiz, e-
content,
demonstration
through
examples,
diagrams | | Explain them with their types. Understanding Based -Describe three types of configuration of Transistor. | | | | UNIT II Junction transistor, Working of NPN and PNP transistors, Three configuration of transistor (C-B, C-E, C-C modes), Common base, common emitter, and common collector characteristics of transistor. | Transistor in different configurations. | PPT, Quiz,
Lecture method,
Problem solving
method. | Compare
Transistors, | - Describe the working of Transistor. | | |------------------------|--|---|---|--|--|--| | AUGUST-
SEPTEMBER | Parameters of a transistor and their relation, D.C. load line, Transistor biasing; various method of transistor biasing and stabilization. Junction Field Effect Transistor(JFET), volt ampere relations. | Operating point of JFET. | Demonstration
through
examples,
diagrams, video | parameters and
biasing of
transistors. | | | | OCTOBER | UNIT III Amplifier, Classification of Amplifiers, common base and common emitter amplifiers, coupling of amplifiers. | Amplifiers. | Video Lecture
Method, PPT,
quiz,
Demonstration
through
examples. | -Explain R-C
coupled
amplifier. | Higher Order Thinking Skills Based - Explain different types of Amplifiers | | | NOVEMBER | Various methods of coupling,
Feedback in amplifiers, advantages
of negative feedback, emitter
follower, distortion in amplifiers,
Resistance-Capacitance(RC) | Negative
Feedback. | Video Lecture
Method, PPT,
quiz, numerical
solving method | | -Discuss feedback in
Amplifiers. | h. Parl | | Head
funent of Phys | coupled amplifier. | 11:36 | | | SOPHI | PRINCIPAL
GIRLS COLLE
JTONOMOUS) | B. Sc. III (SEMESTER-V) SOLID STATE PHYSICS (PHY-501) Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|--|--|--|---|---|--| | JULY | UNIT I Crystal binding and crystal structure: Crystal bonding, lonic bonding, binding energy of ionic crystal, determination of repulsive exponent, covalent bonding, metallic bonding, molecular and vanderwall's bonding, hydrogen bonding. | COMPANY OF THE PARK PAR | Video Lecture
method, online
problem solving
method, quiz,
webinars, PPT | Summarise
different
bonding
between
atoms . | -What is ionic bonding? -What is binding energy of ionic crystal? | Knowledge60
Understanding-30
Higher Order-10 | | AUGUST | Space lattice and crystal structure,
Bravis lattice ,Miller indices and
crystal structure, spacing of planes
in crystal lattice, atomic packing,
simple cubical lattice structure,
face centered cubic lattice
structure, body centered cubic
lattice structure, X-ray diffraction(| Lattice structure | Video Lecture
method, online
problem solving
method, e-
content,
seminars | | | | | | Laue's equation), reciprocal lattice
and its physical significance
,reciprocal lattice vectors,
reciprocal lattice to a simple cubic
lattice, b.c.c. ,f.c.c. | | | | | | |--|---|--|---|--|--|---| | SEPTEMBER | UNIT II Thermal properties of solids: concepts of thermal energy and phonons, internal energy and specific heat, the various theories of lattice specific heat of solids: the Einstein model, vibrational modes of continuous medium, Debye model, electronic configuration of the internal energyhence to the specific heat of metals. | Basic concept of
Einstein and
Debye model. | Online Group
Discussion,
Video Lecture
method, Quiz. | Explain
thermal
properties of
solids. | | | | Mead ent of Physics College hous), Ajmer | Band theory of solids: formation of
bands, periodic potential of solid,
wave function in periodic lattice
and bloch theorem, number of states
in a band, kronnig penny model, | Kronnig Penny
model. | Demonstration
through
examples,diagra
ms, chart, PPT,
Quiz. | | Understanding Based -Discuss Bloch theorem. -what is Effective Mass of electron? | PRINCIPAL
SOPHIA GIRLS COLLEGE
(AUTONOMOUS) | | 絲 | The second second | |---------|-------------------| | च पान 🚍 | | | 31110 | | | | | | | | | | | | HEEK' | VIII DOM | | | | | | | | | holes, distinction between metals, insulators, and intrinsic semiconductors. | | | | | | |---|--|-----------------------------------|--|--|---|--| | OCTOBER -
NOVEMBER | UNIT III Superconductivity: Introduction, experimental features of superconductivity, the isotope effect, electron phonon interaction, the effect of superconducting transition of properties of superconductors, special features of superconducting materials,. | Superconductivit
y. | Video Lecture
Method on
google meet,
PPT, quiz,
numerical
solving method. | What are cooper pairs? Explain BCS theory of superconductivity | <u>Higher Order</u>
<u>Thinking Skills Based</u> | | | NOVEMBER | Theoretical survey(basic idea), Flux quantization, BCS theory of superconductivity: cooper pairs ,high temperature superconductors(basic ideas), magnetic properties: classification of magnetic materials, origin of atomic magnetism, magnetic susceptibility, phenomenon of | Magnetic properties of materials. | Meet Lecture
Method, PPT,
quiz, numerical
solving method | | - Estimate the BCS theory of superconductivity Explain the phenomenon of flux quantization. | Sr. Parl | | rtment of Physics
hia & A. College
nomous), Ajmer | diamagnetism, para magnetic susceptibility of ionic crystal, | XXXX | | | | PRINCIPAL
SOPHIA GIRLS' COL
(AUTOHÓMOUS
AJMER | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. I (SEMESTER II) Kinetic Theory of Gases and Theory of Relativity (PHY-201) Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM II
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|---|--|---|---------------------------------------|---| | JANUARY | UNIT I Assumption of kinetic theory of gases, law of equipartition of energy, Maxwell distribution of speed and velocities, Experimental verification of Maxwell's law of speed distribution. | Gases. | Video Lecture
method,
problem solving
method, quiz,
open book test | What are the assumptions of kinetic theory? | -What law of equipartition of energy? | Knowledge—60
Understanding-30
Higher Order-10 | | FEBRUARY | Most probable speed, average speed, r.m.s. speed, mean free path, Transport of energy and momentum, Brownian motion, Real gases, Vander Wall's equation. | | Online meet,
Video Lecture
method,
problem solving
method, e-
content | | -what is Maxwell's
la? | | | FEBRUARY | UNIT II
Inertial frames, Galilean
transformation, Non-Inertial frames, | Describe the types of Frames of References. | Online group | P | Understanding Based what are the | | | MARCH | fictious forces, Displacement, velocity and acceleration in rotating co-ordinate system, Coriolis force and its application, Effect of Coriolis force on a particle moving Horizontally on Earth | | Discussion,
Video Lecture
method,
presentation | | equation for Galilean
Transformation. -Derive the effect of
coriolis force on a
particle moving | | |--|--|--|---|--|---|---| | APRIL-May | Effect of Coriolis force on pendulum and Foucault pendulum, Effect of Coriolis force on Bodies falling Vertically downward on Earth, Effect of Coriolis force on Bodies thrown Vertically upward on Earth , Michelson Morlay experiment. | Coriolis force | Demonstration
through
examples, PPT,
diagrams, e-
content | | horizontally on earth | | | July 22 | UNIT III Application of special theory of relativity, Lorentz co-ordinate and physical significance of Lorentz invariance, Length contraction, Time dilation, Velocity addition theorem. | To calculate length contraction and time dilation. | Video Lecture
Method, PPT,
quiz, numerical
solving method,
open book tesr | Calculate variation of mass with velocity and also the mass enery equivalence. | Higher Order Thinking Skills Based - Explain Micchelson Morley experiment. | | | Head
nent of Physica
Girls' College
omous), Ajmer | | Neg L | Video Lecture
Method, PPT,
quiz, numerical
solving method | | Calculate Lorentz
Transformation
equation. | Sr. Pearl PRINCIPAL BOPHIA GIRLS COLLE (AUTONOMOUS) | # B.Sc II (SEMESTER IV) Optics (402) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|--|---|---|---|--| | January | Unit-1 Interference of a light: The principle of superposition, two slit interference, coherence requirements of the sources. Newton's ring and its application to find wavelength of light and refractive index of medium | Knowledge of
Interference,Newton
rings and Michelson
interferometer | Video lecture e-
content ,PPT,
Examples,
online group
disscussion | Summarize
Interference
and its
application in
Michelson
interferometer | -what is the principle of superposition? -What is the principle of Interference? | Knowledge30
Understanding-50
Higher Order-20 | | February | . Haidinger fringes: Fringes of equal inclination. Michelson interferometer it's application for precision determination of wavelength, Wavelength difference and the width of spectral lines. | | Quiz, PPT,
Video lectures,
e- content, open
book test | | | Ť | | March | UNIT -2 Polarization of light: Meaning of polarization, polarization by reflection: Brewster law, polarization by refraction through "Pile of plates", Laws ofMalus, Phenomenon of double refraction, uniaxial and biaxial crystals, | Meaning
polarisation and its
applications | Online Class
test,assignement
s,project work,
Video lecture on
google meet ,ppt | • Explain
Brewster Law | Understanding Based -Write application of Newton Rings -what do you mean by Law of Malus? | | |---|---|---|---|---|---|---------------------------------------| | April-May | Huygenstheory of double refraction, the ordinary and extra ordinary refractive indices.Production and Analysis of Polarized Light: production of plane polarizedlight, the Polaroid,. | | | | | | | 1 | Nicol prism, analyser and polarizer,
double image prisms, quarter and
half wave plates
Unit-3 | | Video lecture, e-
content,
demonstration
through
diagrams,
Examples, | •Compare
Fresnel and
Fraunhoffer
Diffraction | | | | July -202 1 | Fresnel diffraction: Half periods zones, Fraunhofferdiffraction: Single slit, double slit, n slit, Intensity distribution, Plane diffraction grating, Dispersive | | online group
discussion | and their
application in
grating. | Higher Order
Thinking Skills Based | 10 | | Head
ent of Phys
Girls' Colleg
mous), Ajme | power of a grating, Resolving
power, Reyleigh criterion, resolving
power: telescope, grating, prism. | 231 | | | - Explain Working
ofMichelson
interferometer
-Explain Diffraction
due to Double slits | PRINCIPAL BOPHIA GIRLS: CO (AUTONOMOU | B. Sc. III (SEMESTER-VI) **NUCLEAR PHYSICS (PHY-601)** Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM VI
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage
(%) | |-----------------|--|---------------------|--|--------------------------------------|--|--| | DECEMBER | UNIT II Nuclear fission: The discovery of nuclear fission, the energy release in the fission, the fission products, mass distribution of fission products, fission cross section and threshold, neutron emission in fission, the prompt neutrons and delayed neutrons, energy of fission neutrons, theory of nuclear fission and liquid drop model. | Fission and fusion. | Google meet
Lecture method,
problem solving
method, quiz | Summarise the discovery of neutrons. | Knowledge Based -What are prompt and delayed neutrons? -What is nuclear fission? | Knowledge60
Understanding-30
Higher Order-10 | | JANUARY | Barrier penetration- theory of spontaneous fission, nuclear energy sources, nuclear fission as a source of energy, the nuclear chain reaction, condition of controlled chain reaction, the principle of nuclear reactors, classification of reactors, typical reactors, power of nuclear reactors, critical size of thermal | Nuclear reactors. | Google meet
Lecture method,
seminars,
problem solving
method, online
quiz | | | | | | | reactors, Breeder reactors, reprocessing of spont fuel, radiation damages and fission products poisoning, uses of atomic energy. | 1 | | | | | |---|--|--|------------------------|---|---|---|---| | | FEBURARY | UNIT III Nuclear fission: the sources of stellar energy, the plasma: the fourth state of matter, fusion reaction, energy balance and Lawson criteria, magnetic confinement of plasma, classical plasma losses from the magnetic container, anomalous losses, turbulence and plasma instabilities. | .Lawson criteria. | Online Group
Discussion,
Video Lecture
method, Quiz, e-
content | Concept of elementary particles. | Understanding Based -Discuss Lawson criteria. -what are elementary particles? | | | | FEBURARY-
MARCH | Elementary particles: classification of elementary particles, fundamental interactions, unified approach(basic ideas), the conservation laws, Quarks(basic ideas), charmed and coloured quarks. | Elementary particles. | Online
Demonstration
through
examples, PPT,
Quiz. | | Higher Order Thinking Skills Based Describe the nature of cosmic rays. | | | Department
Sophia Girls
(Autonomous | April-May ad of Physics 'College '). Ajmer | Nuclear properties: Rutherford's theory of particle scattering, properties of nuclei, quadrupole moment and nuclear ellipticity, Quadrupole moment and nuclear spin, parity and orbital angular momentum, parity and its conservation. | Nuclear
properties. | Meet Lecture Method, PPT, quiz, numerical solving method., e-content. | Explain the PRINCIPAL IIA GIRLS' CO AUTONOMOU | Explain Lattitude effect. | PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
ALMER |