SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER ## B. Sc. I (SEMESTER I) **MATRICES (PAPER I) (MAT-101)** Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|---|--|--|--|--| | August-
September | UNIT I Matrix, Types of matrix, Elementary operations on matrices, Symmetric and Skew Symmetric matrices, Hermitian and Skew Hermitian matrices, unitary matrix. Inverse of matrix, Linear Independence of row and column matrices. Row rank, Column rank and Rank of matrix, Equivalence of column and row rank. | Linear combination of vectors Rank of a matrix | Lecture method, Brainstorming Demonstration through examples, Demonstration through examples, Problem solving classs | Identify types of Matrix, its rank by using Normal form and Echelon form method and nature of vectors. | Knowledge Based -What do you mean by orthogonal matrix? -Define Row and Column rank of matrix? Understanding Based -List four properties of an Eigen Value? -Show that A satisfies Cayley Hamilton theorem. | Knowledge60
Understanding-30
Higher Order-10 | | OHE COL | UNIT II | Homogeneous and non- | | | | | |----------------------|---|-----------------------|-------------------------|--------------------------|---|--------------| | October-
November | Applications of matrices to | Homogeneous system | Online Group | | 12 41 | | | | solve a system of linear (both homogeneous and non- | of equation | Discussion, | | $A = \begin{bmatrix} 2 & 6 \\ 0 & 1 \end{bmatrix}$ | | | | nonogeneous una non- | | Demonstration | | | | | | homogenous) equations, | | through | Solve System | W-1 - 0 1 | | | | Theorems on consistency of a | | examples, Quiz | of Linear | <u>Higher Order</u>
<u>Thinking Skills Based</u> | | | | system of linear equation | | | Equation by | - Evaluate roots of | | | | | | | Matrix
method, | the equation | | | | | | | Problems | $x^3 - 15x - 126 = 0$ | | | | Eigen values, Eigen vectors and | Cayley - Hamilton | Demonstration | related to | | | | | the Characteristic equation of a | theorem | through examples, | Eigen value | By Cardan's method. | | | | matrix, Cayley - Hamilton | | Problem solving | and Eigen
vector. | [[1 4] | | | | theorem and its use in finding Inverse of a matrix. | | classs | vector. | $A = \begin{bmatrix} 1 & 4 \\ 4 & 2 \end{bmatrix}$ | | | | miverse of a matrix. | | | | 14 21 | | | | | | | | -State and Prove the | | | January - | UNIT III | General properties of | T | | Cayley Hamilton | | | February | Relation between roots and | polynomial equation | Lecture
Method, Quiz | Evaluate roots of Cubic | theorem. | | | | coefficients of general | 1 | Tromos, Quiz | equation by | | | | | polynomial equation in one | | | Cardan's | | | | | variable Transformation of | | | method and | | | | | equations. | | | Biquadratic equations by | | | | | | | | Ferrari's | | ^ | | Pearl | Descartes' rule of signs, Solution | | | method. | | V. we | | ian | of cubic equation by Cardan's | Solution of cubic and | Demonstration | | | Hoad | | INCIPAL | method, Solution of Biquadratic | Biquadratic equation. | through examples, | | Department | of Mather | | DNOMOUS) | equations by Ferrari's method. | | Problem solving | | Sophia G | irls' Colleç | | MER | REVISION CLASSES | | class | 1 | (Autonor | nous) , Ajm | ## B. Sc. I (SEMESTER I) ABSTRACT ALGEBRA (PAPER II) (MAT-102) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM 1
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------------|---|---|---|---|---|--| | September-
October | UNIT I Definition of a group with examples, Order of finite group, General properties of groups, Integral power of an element of a group, Order of an element of a group. Subgroup, Generation of groups, Cyclic group, cosets decomposition, Lagrange's theorem and its consequences. | Groups and its properties Subgroups | Demonstration through examples, Quiz Lecture method, Problem solving class | Explain Groups, general properties of groups and Application of Lagrange's theorem. | Knowledge Based -State Lagrange's Theorem. -Define Cyclic Group? Understanding Based -Sow that H is a normal subgroup iff Ha = aH. -Compare Subgroup and Normal Subgroup properties. | Knowledge60
Understanding-
30
Higher Order-10 | | December-
January | UNIT II Normal subgroups and Quotient groups,Permutation, | Normal subgroup and its properties ,Permutation group | Lecture method
, Brainstorming | Analyze
Normal
subgroups, | | | | | | permutation group, cyclic permutation, Even and Odd permutation, The alternating group A _n . | | | Quotient
group,
Permutation
group and
Morphism of
group. | <u>Higher Order</u>
<u>Thinking Skills Based</u> | | |------------|--|---|-------------------------|---|--|--|--| | | | Morphism of groups, Homomorphism and isomorphism, The fundamental theorem of homomorphism. | Group Morphism | Lecture method,
Problem solving
class | | - Prepare an Operation table for $G = \{0,1,2,3;+_4\}$ Also find (a) Order of every | | | | February | UNIT III Ring, ring with unity, zero divisors, integral domain and field and their properties. Characteristic of a ring and integral domain, Subring, subfield, prime field, Ring morphism. | Ring and their Subrings | Demonstration
through
Examples | Solve problem related to Ring, Ideals, Quotient rings, Integral domains, and Fields. | element. (b) Check the group is cyclic or not. -Prove that the normaliser $N(a) = \{x \in G: ax = xa\}$ | | | SOPHIA GIF | CIPAL
CLS' COLLEGE
NOMOUS)
IMER | Ideals (Principle, Prime and Maximal) and field of quotients of an Integral Domain. REVISION CLASSES | Ideals | Demonstration
through
examples. | | is a subgroup of G, a is an element of a group G. Head Department of Mathematics Sophia Girls' College (Autonomous), Ajmer | | ## B. Sc. II (SEMESTER III) LINEAR ALGEBRA (PAPER I) (MAT-301) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM III
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |------------------|--|---------------------------------------|---|--|---|--| | August | UNIT I Vector space: Definition and examples of vector space, subspace, sum and direct sum of subspace, linear span, linear dependence, independence and their basic properties. Basis, Finitely generated vector space, Existence theorem for basis of a finitely generated vector space, Invariance of the number of elements of basis set, dimensions, Quotient space and its dimension. | Basis and Dimension of a Vector space | PPT, Demonstration through theorems Demonstration through examples and
theorems, Problem solving class | Explain the concepts of vector spaces, subspaces, basis, dimension and their properties. | Knowledge Based -What do you mean by Diagonalization? - Define Linear Combinations of vectors. Understanding Based - Show that the set $W = \{(a, b, c): a - 3b + 4c = 0; a, b, c \in R\}$ of 3-tuples is a subspace of the vector space $V_3(R)$. | Knowledge50
Understanding-35
Higher Order-15 | | 3 | A THE | | |-------|----------|---| | BELL | † | 3 | | and K | 72 | | | | UNIT III Eigen values and Eigen | Properties of Eigen value of matrix A | Quiz, Demonstration | Compute
Eigen values | -Apply Cayley –
Hamilton theorem to | | |---|---|---------------------------------------|---|--|--|-------------------------| | | vectors, similar matrices, equivalent matrices, minimal polynomial. | | through
examples | and Eigen
vectors,
minimal
polynomial,
Jordan | find A^{-2} $\begin{bmatrix} 4 & 0 \\ 1 & -1 \end{bmatrix}$ Higher Order | | | | Diagonalization of matrices,
Jordan blocks and Jordan
forms. | Diagonalizable matrix | Demonstration
through
examples,
Problem solving
class | Canonical of
Matrix. | - Prove that Similar matrices have the same characteristic polynomial. | | | November-
December | UNIT II Homomorphism and isomorphism of vector space, theorems on space morphism, Rank and Nullity, Sylvester law of nullity, Algebra of linear transformation. | Homomorphism of
Vector space | PPT,
Demonstration
through
examples and
theorems | Construct Homomorphis m of vector space, matrix related to linear transformatio n and verify | -Evaluate the Eigen values of the following matrix A find their corresponding Eigen vector | | | Pearl RINCIPAL HRLS' COLLEGE ONOMOUS) ALMER | Dual spaces, Bidual spaces, Adjoint of a linear transformation, Matrix representation of a linear transformation. REVISION CLASSES | Matrix of Linear transformation | Demonstration | Sylvester law
of nullity. | $A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ Depart | Head
ment of Mathema | ## B. Sc. II (SEMESTER III) #### **DIFFERENTIAL EQUATIONS (PAPER II) (MAT-302)** Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM III
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |------------------|--|--|--|---|--|--| | July | UNIT I Concept and formation of a differential equation, Order and degree of a differential equation, Differential equations of first order and first degree, Bernoulli's equation, Exact differential equation, integrating factors. First order higher degree | Differential equations of first order and first degree. Differential equations of | Demonstration through examples, Quiz | Formulate the ordinary the Ordinary differential equation and solve Differential equations of first order and first degree. | Knowledge Based -Write the standard form of Bernoulli's Equation. -What is singular Solution? Understanding Based -Solve: $p q = \frac{ax}{y}$ | Knowledge50
Understanding-35
Higher Order-15 | | - | equations solving for x, y, p. Lagrange's equation, Clairaut's equation, equation reducible to Clairaut's form, Singular solution. | first order and higher degree. | through
examples,
Problem solving
class | | - Apply Charpit's formula to sovle the partial differential equation $p x + q y = p q$ | | | September | UNIT III Partial differential equation: Formation, order and degree, linear and non-linear partial differential equation of first order. Complete solution, singular solution, General solution, solution of Lagrange's linear equations, non-linear partial differential equation of first order: solution by four standard forms. Solution of non-linear differential equation by Charpit's method | Solution of linear and non-linear partial differential equation of first order. | Demonstration
through
examples, Quiz | Solve non-
linear Partial
differential
equation by
Charpit's
method,
Homogeneous
and non-
Homogeneous
linear partial
differential
equation with
constant
coefficients. | Higher Order Thinking Skills Based - Evaluate the solution of given differential equation $pq = x^m y^n z^{2l}$ -Formulate differential equation of the following family of curves: $y = ax + by + c$ | | | |-----------|--|---|--|---|--|-----|--| | | Homogeneous and non-
Homogeneous linear partial
differential equation with
constant coefficients, Partial
differential equation with
variable coefficients redu cible
to equations with constant
coefficients, their
complimentary function and
particular integrals. | Partial differential equation with constant and variable coefficients | Online Group
discussion,
Demonstration
through
examples,
Problem solving
class | | | 15. | | | December | UNIT II Linear differential equations | Linear differential equations with constant | Demonstration
through | Learn various techniques of | | | | | with constant coefficients: Homogeneous and non- homogeneous linear ordinary differential equation, Geometrical meaning of a differential equation and orthogonal trajectories. Linear differential equation of second order: Reduction to normal form, Method of variations of parameters, Ordinary Simultaneous differential equations. Simultaneous equation of the form d x / P = d y / Q = d z / R. REVISION CLASSES | Linear differential equation of second order. | Demonstration
through
examples,
Problem solving
class | getting solutions of linear differential equations with constant coefficients, linear differential equation of second order. This paper will help in skill development in the field of Real Number and their Applications. | | |---|---|---|---|--| | | | | | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Mathematics Sophia Girls' College (Autonomous), Ajmer # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. III (SEMESTER V) METRIC SPACES AND COMPLEX ANALYSIS (PAPER I) (MAT -501) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------------|--|---|--|---
---|--| | August | UNIT I Definition and examples of a metric space, Diameter of a set, Bounded set, Open sphere, Closed sphere, Open set, Properties of open set . Interior point and interior of a set, Closed set, Properties of closed set, Limit point of a set, Derived and closure of a set, Boundary point of a set. | Metric space and Open set Limit Point and Closed set | Demonstration through examples and theorems Quiz, Demonstration through theorems, Problem solving class | Explain several standard concepts of Metric space and their properties, Open and Closed sets. | Knowledge Based -Write necessary condition for an analytic function? -Define an Open set? Understanding Based -Show that every closed sphere is a closed set. Test $\lim_{z\to z_0} \left(\frac{z}{z}\right)$ | Knowledge40
Understanding-35
Higher Order-25 | | September-
October | UNIT II Continuity and Differentiability of complex valued function, | Differentiability of complex valued function | Demonstration
through
examples, Quiz | | exist or not . | | | | | Analytic function, Necessary
and Sufficient condition for
analytic function, Cauchy –
Riemann Equations (Cartesian
and Polar form) | | | Analyze
Analyticity of
function and
Construct | Higher Order
Thinking Skills Based | |--------------------------|-----------------------|--|----------------------------|--|--|--| | | | Harmonic function, Conjugate
Harmonic function,
Construction of an analytic
function by Milne Thomson
method. | Analytic Functions | Online Group
Discussion,
Demonstration
through
examples,
Problem solving
class | analytic
function by
Milne
Thomson
method. | -Evaluate f (z) in
terms of z, if f (z) =
u+iv is an analytic
function and $u-v=$
$e^{x}(cosy-siny)$ | | | November-
December | UNIT III Conformal mapping, Isogonal mapping, Necessary and sufficient conditions for a conformal mapping. Some elementary transformations: Translation, Rotation, Magnification, Inversion. | Conformal mapping | Demonstration
through
examples,
Brainstorming | Apply the concepts of the conformal mapping , Bilinear transformatio n in real life problems. | -Prove that: (a)The empty set Ø and the full space X are closed sets. (b)The union of a finite family of | | PRIN
HA GIR
(AUTO) | | Linear transformation, Bilinear transformation, Properties of Bilinear transformation, Cross ratio, Invariant point of Bilinear transformation. REVISION CLASSES | Bilinear
transformation | Demonstration
through
examples,
Problem solving
class | This paper will help in skill development in the field of higher order research related to Complex Analysis. | Department Sophia Girls' College (Autonomous), Ajmer | ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. III (SEMESTER V) LINEAR PROGRAMMING (PAPER II) (MAT -502) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|--|--|---|--|---|--| | July | UNIT I Linear programming problem: Definition of Linear programming problem, Formulation and Solution of Linear programming problem, Feasible solution. Basic Feasible solution, Optimal solution, Convex set and their properties, Hyperplane, Basic solutions and properties. | Graphical approach to solve LPP Convex set and its properties | Demonstration through examples, Brainstorming Online Group discussion, Demonstration through examples, Problem | Explain several
standard
concepts of
Metric space
and their
properties,
Open and
Closed sets. | Knowledge Based -What do you mean by slack and surplus variable? - Write main components of linear programming problem. Understanding Based - Show that the following set S = {(1, | Knowledge40
Understanding-35
Higher Order-25 | | | | | Solving class | | 0), (1, 1)} is L.I. | | | July | UNIT II Theory of Simplex method, Fundamental Theorem of | Simplex method to solve LPP | Demonstration
through
examples | | * | No. | | | Linear Programming (Statement only), The Simplex algorithm, Simplex method in tableau format. introduction to artificial variables, case of unbounded solutions, Big- M method, Two phase method, Degeneracy in linear programming problem. | Degeneracy in linear
programming problem | Demonstration
through
examples,
Online Group
discussion,
Problem solving
class | Analyze Analyticity of function and Construct analytic function by Milne Thomson method. | - Solve the following L.P.P. by graphical method $ Max z = 2x + y $ s.t. $ x + y \le 4 $ $ x + y \le 6 $ $ x \le 3 and $ $ x \ge 0, y \ge 0 $ | | |----------------------|--|---|--|---|---|--| | October-
November | UNIT III Duality in Linear programming problem: Formulation of the dual problem, Primal-Dual relationships, Symmetric and Un-symmetric dual problem with restriction in sign, Theorems related to dual problem. | Primal-Dual
relationships | Demonstration
through
examples, Quiz | Apply the concepts of the conformal mapping , Bilinear transformatio n in real life problems. | Higher Order Thinking Skills Based -Evaluate max z of the following L.P.P. by simplex method. $Max z = 2x_1 + x_2$ s.t. | | | | Revised Simplex method (standard form I and II). REVISION CLASSES | Revised Simplex
method | Demonstration
through
examples,
Problem solving
class | help in skill
development
in the solution
of Analytical
Problems. | $3x_1 + 5x_2 \le 15$
$6x_1 + 2x_2 \le 24$
and | | | | • | $x_1, x_2 \ge 0$ -Prove that every hyper plane is a convex set and intersection of two convex set is again a convex set. | |---|---|--| | PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
AJMER | | | | (AUTONOMOUS) AJMER | | Head Department of Mathematics Sophia Girls' College (Autonomous), Ajmer | | (AUTONOMOUS) AJMER | | Head Department of Mathematics Sophia Girls' College (Autonomous), Ajmer | ## B. Sc. I (SEMESTER II) #### Vector calculus and Geometry (PAPER I) (MAT-201) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM II
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|---|---|---|--|--| | April | UNIT I Vector differentiation, Gradient, Divergence and Curl, Identities involving these operators and related problems. Vector integration, Line and surface integral, Theorem of Gauss, Green's and Stoke's. | Vector differentiation Vector integration | Audio Lectures, problem solving class, Test | Evaluate vector Differentiation , gradient, divergence, curl, line integral and surface integral. | Knowledge Based - What do you mean by gradient of scalar point function? - Define Cylinder. Understanding Based | Knowledge60
Understanding-30
Higher Order-10 | | May -
June | UNIT II General equation of second degree, Tracing of conics, centre of a conic, coordinates of the centre. Equation of the conic referred to centre as | Tracing of Ellipse,
Parabola and
Hyperbola. | Lecture
Method, Quiz, | Design | - Compute equation of conic section in its simplest form. - Show that grad (f+g) = grad f+ grad g | | | Su-Piarl PRINCIPAL SOPHIA GIRLS' COLLEG (AUTONOMOUS) AJMER | sphere, tangent line and tangent plane of sphere. Cone, Enveloping cone, Tangent plane of cone, Reciprocal cone. Cylinder, Right circular cylinder, enveloping cylinder. Revision Class | Properties of Cone Properties of Cylinder | Lecture Method, Problem solving class, PPT Lecture method, Problem solving class | Dimensional figure like Sphere, Cone and CylinderThis paper will help in skill development in the field of Operators, 2 Dand 3 D Geometry | Sophi | Head
ent of Mathematics
ia Girls' College
nomous) , Ajmer | |--|--|--|---|---|---|--| | | | Properties of Sphere | Lecture
Method, Quiz, | Solve Problem related to 3- | 12x+15 y +81 =0 - Evaluate integral of | | | | Ellipse, Parabola and Hyperbola. The Polar equation of Conic: polar equation of a straight line, circle and conic chord, Auxiliary circle, Tracing of | Tracing of conic I/r = 1+ecose. | Lecture method,
Problem solving
class, Test | Parabola and
Hyperbola in
Cartesian
Coordinate. | Higher Order Thinking Skills Based - Evaluate the Coordinates of the centre of the conic: 36x ² +20xy +40 y ² - | | | | origin, Asymptotes of a conic,
Length and position of axes of
a standard conic, Tracing of | | | different types
of conic like
Ellipse, | Where f and g are scalar point functions. | | ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. I (SEMESTER II) Advanced Calculus (PAPER II) (MAT-202) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM II
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|---|--|---|--|--| | April | UNIT III Beta and Gamma function, Double integral, change of order of integration. Triple integral, Dirichlet's integral and Liouville's extension of dirichlet's integral (statement only). | Deal with the property of beta function, gamma function and double integral Triple integral property | Audio lecture,
Brainstorming Lecture method,
Problem solving
class | Solve Problem related to beta function, Gamma function, Double integral and Triple integral | Knowledge Based - Define Envelopes. - State Dirichlet's Integral. Understanding Based - Find the extreme value of the function: | Knowledge60
Understanding-30
Higher Order-10 | | May | UNIT I Partial Differentiation, Change of variables, Euler's theorem on homogeneous functions, Differentiation of implicit functions, Jacobians | Partial Differentiation | Lecture method,
Online Group
Discussion | Evaluate Maxima, Minima and saddle points of function of | x ³ + y ³ - 3axy - Show that B (m,n) = B (n,m) Higher Order Thinking Skills Based -Evaluate the | | | 業 | 1 | | |-----|---|---| | 333 | |) | | Envelopes, Evolutes, Maxima,
Minima and saddle points of
function of two variables. | Maxima and Minima | Lecture method,
Problem solving
class, Test | two variables. | asymptotes of the following curve. $x^3 + 2x^2y$ $-xy^2 - 2y^3$ | | |---|--|--|--|--|--| | UNIT I Derivative of length of an arc, Asymptotes in Cartesian coordinates, intersection of curve and its asymptote, Curvature, radius of curvature for (Cartesian, polar, parametric and pedal curves) Curvature, centre of curvature, chord of curvature Tests for concavity and convexity, test for point of inflexion, singular points, curve tracing(in Cartesian and polar co-ordinates). | Asymptote in Cartesian coordinate and curvature Curve tracing in Cartesian and polar coordinate | Online Group
discussion
, Problem
solving class | Sketch curves
in Cartesian
and polar
coordinate
systems. | $+xy - y^2 = 1$ -Evaluate $\iiint z dx dy dz$ Where region of integration is cylinder V bounded by the following curves $z=0$, $z=1$ and $x^2+y^2=4$ | | |
Revision Class | | | | | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Mathematics Sophia Girls' College (Autonomous), Ajmer B. Sc. II (SEMESTER IV) Real Analysis (PAPER I) (MAT-401) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM IV | UNIT/TOPIC | Concepts/facts | Teaching | Learning | Questions | Marks Weightage | |-------------------|---|---|--|---|--|--| | Month
April | UNIT I Real number system as a complete ordered field: Field and its properties, ordered field, lower bound, upper bound, supremum and infimum of sets, the completeness property of Real | properties of the Real
number system | Pedagogy PPT, Lecture method, Brain Storming | Explain properties of the Real number R and nature of Real Sequences. | Knowledge Based - State Archimedean property. -What do you mean by Cauchy's convergence criterion? | Knowledge50
Understanding-35
Higher Order-15 | | | number system, the Archimedean property. Definition of sequence theorems on limits of sequences, bounded and monotonic sequences, | Convergence criteria of sequence. | Lecture Method,
Problem solving
class | | $\frac{\textit{Understanding}}{\textit{Based}}$ -Show that the sequence $< x_n >$ | | | | Cauchy's convergence criterion. | | Online Cours | el . | converges to '1'. Where $x_1 = \frac{1}{2}$ | | | April and
June | UNIT II | | Online Group
Discussion,
Quiz | Apply the ratio, | and | | | | Infinite series of non-negative terms, different tests of convergence of infinite series comparison test, ratio test, Logarithmic, Morgen and Bertrand test (without proof). | Nature of infinite series | | Leibnitz',
Cauchy n th root
test for
Convergence of
an Infinite series
of Real number. | $x_{n+1} = \frac{2x_{n+1}}{3}$ -Test whether the series $\sum \sin \frac{1}{n}$ | | |---|--|---|--|--|--|---| | | Alternating series, Leibnitz' theorem Absolute and conditional convergence, Pointwise convergence of sequence of functions, Uniform convergence | Nature of alternating series, Uniform convergence | Lecture
method,
Problem solving
class, Test | | is convergent or divergent . Higher Order Thinking Skills Based - Evaluate the value of Θ for the function | | | | UNIT III Logarithmic function, exponential function and its standard properties (Covid - 19), Limit, continuity, differentiability of two variable functions. | Limit, continuity,
differentiability test. | PPT, Lecture method | Test Continuity and Differentiability
of two variable function and the application of mean value Theorem. | $f(x) = ax^2 + bx + c$ in
the following form of
Lagrange's mean
value theorem
$f(x+h) = f(x) + hf'(x + \Theta h),$
$0 < \theta < 1$ | · | | PRINCIPAL
GRILS' COLLE
JONOMOUS)
AJMER | Mean value theorems: Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Riemann integral, Fundamental theorem of integral calculus. Revision Class | Mean value theorems and , Riemann integral | Lecture method,
Problem solving
class, Test | This paper will help in skill development in the field of Real Number and their Application. | So | Head
tment of Mather
phia Girls' College
itonomous) , Ajme | #### B. Sc. II (SEMESTER IV) #### Mechanics (PAPER II) (MAT-402) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM IV
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|---|---|--|--|--| | May | UNIT II Kinematics and Kinetics Rectilinear motion, Velocity and acceleration along radial, transverse, tangential and normal directions, Simple harmonic motion. | Kinematics and
Rectilinear motion | Lecture method,
PPT, Group
Discussion | Deal with the
Kinematics
and Kinetics of
the rectilinear
motions of a
particle,
Problem
related | Knowledge BasedState Hook's law.What do you mean by constrained motion? | Knowledge50
Understanding-35
Higher Order-15 | | | Rectilinear motion in resisting medium, Hook's law and related problem. | resisting medium and string related problems. | Lecture Method,
Problem solving
class | | Understanding Based Show that if the displacement of a particle moving in a straight line is expressed by the equation x = a cosnt + bsin nt, it describes S.H.M. | | | May - June | UNIT III Constrained motion in vertical and horizontal circles, central orbit, inverse square law (Planetary motion), Impact (Direct and Oblique). | Constrained motion and Direct and Oblique impact | Lecture Method,
Group
discussion,
Problem solving
class | Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions. | - Distinguish between direct impact and Oblique impact <u>Higher Order</u> <u>Thinking Skills Based</u> - Evaluate the force | |-----------------------------------|---|--|---|---|--| | PRINCIPAL GIRLS' COLLECTIONOMOUS) | UNIT I General Conditions of equilibrium of coplanar forces: Reduction of coplanar forces into a force with couple, Equilibrium of a rigid body under three forces, Equilibrium of rigid body under more than three forces.Friction, Common Catenary Revision Class | Equilibrium of coplanar forces Friction and Catenary problem | Lecture Method,
Problem solving
class | Application of Friction. | towards the pole when a particle describes the curve r = asin nΘ -Prove that the least eccentricity of the ellipse which can rest on the plane is (2 sinα /(1+sin α)) ^{1/2} , If a perfectly rough plane is inclined at an angle α to the horizon. Department of Mathe Sophia Girls' Colleg (Autonomous), Ajm | ### B. Sc. III (SEMESTER VI) Statistics (PAPER I) (MAT -601) Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM VI
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|---|--|---|--|--| | | UNIT I Random experiment, Sample space, Definition of Probability, Conditional probability, Addition theorem of probability, Multiplication theorem of compound probability, Baye's theorem. Random variate, Probability distribution, Mathematical expectation of the Sum and product of two random variate, Covariance, Curve fitting, Regression and Correlation Coefficient. | Mathematical expectation, Regression and Correlation Coefficient. | Lecture Method and , Quiz Lecture method, Problem solving class | Apply several concepts of Probability, Application of Baye's theorem, Regression and Correlation Coefficient for solving real life situation. | Knowledge Based - State Baye's theorem What do you mean by Mathematical expectation? Understanding Based - Show that mean of binomial distribution is np Explain two properties of Normal Distribution. | Knowledge40
Understanding-35
Higher Order-25 | | | UNIT II | | | Explain
Discrete | <u>Higher Order</u>
<u>Thinking Skills Based</u> | | | WIEDLINE . | | | | | | | |------------|---|--|---|---|--|--| | May | Moment Generating Functions, Theorems on moment generating function, Cumulants, Properties of Cumulants, Characteristic function. | Moment Generating
Functions and
Cumulants. | Lecture Method,
Quiz | probability
distributions
like Binomial
and Poisson
distribution. | - Evaluate first four moment about origin of Poisson distributionProve that the rth | | | | Discrete probability distributions: Binomial, Poisson distribution and their Mean, Variance, Moment, Recurrence relation, Moment generating function. | Binomial and Poisson distribution | Group
Discussion,
Lecture Method,
Problem solving
class | × | moment about origin of the binomial distribution b(x,n,p) is given by: $\mu'_r = \left(p \frac{\partial}{\partial p}\right)^r$ | | | May - June | UNIT III Continuous probability distribution: Rectangular distribution, Normal distribution, derivation of normal distribution from binomial distribution, Mean, Variance, Moment, Recurrence relation, Moment generating function, Additive property of normal distribution, Problems related to area property of normal distribution, Exponential Distribution. | Normal distribution | Lecture Method,
PPT, Problem
solving class,
Test | Solve Problems related to Rectangular Distribution and area property of normal distribution. This paper will help in skill development in the field of Probability and its Applications. | (p +q) ⁿ | | | (Case study related to COV
19 based on Exponential
Distribution) | 7ID | | | |--|-----|--|---| | Revision Class | | | | | | | | | | | | | Λ | | Sh. Parl | | | land | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER | | | Head Department of Mathematic Sophia Girls' College (Autonomous), Ajmer | | PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
AJMER | | | Head Department of Mathematic Sophia Girls' College (Autonomous), Ajmer | #### B. Sc. III (SEMESTER VI) #### **NUMERICAL ANALYSIS (PAPER II) (MAT -602)** Max. Marks: 100 (70 External; 30 Internal) Min. Marks: 40 (28 External; 12 Internal) Credit: 04 | SEM VI
Month | UNIT/TOPIC | Concepts/facts |
Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|---|--|---|---|--| | March | UNIT I Numerical operators, Properties of operators, Fundamental theorem of difference calculus, Factorial function. Interpolation with equal intervals: Newton's forward and Newton's backward interpolation formula. | Properties of
Numerical operators
Interpolation with
equal intervals | Lecture Method, PDF Notes Group discussion, Lecture Method, Problem Solving class | Learn about various Numerical operators, interpolating and extrapolating methods. | Knowledge Based What do you mean by Factorial function. State fundamental theorem of difference calculus. Understanding Based Calculate the root of the | Knowledge
40
Understandin
g-35
Higher Order-
25 | | April | UNIT II Divided differences and their properties, Newton's formula for unequal intervals, Lagrange's formula, Central difference, Gauss forward and backward | Interpolation with unequal intervals | Lecture Method,
PPT | Solve question
related to
unequal
intervals by
using
Newton's | equation X ³ – 9x + 1 = 0 between x = 2 and x = 4 by the method of bijection. | | | | , | formula, Stirling interpolation formula Bessel formula. | | | formula,
Lagrange's
formula. | -Show that f(a,b,c) = $\frac{-(abc + bcd + acd + abd)}{a^2b^2c^2d^2}$ | | |------|----------|--|---|---|---|--|--------------------------------| | | | Numerical Differentation: Derivative from interpolation formulae, approximate expressions for the | Numerical
Differentation | Lecture Method,
Group discussion,
Problem solving
class, PPT | | If $f(x) = 1/x^2$. Higher Order Thinking | | | L | | derivatives of a function. | | | | Skills Based | | | | July | UNIT III Numerical Integration: General quadrature formula for equidistant ordinates, Trapezoidal, Simpson's one- third, three-eighth rule, Weddle's rule, Gauss' Quadrature formula, Euler – McLaurin's summation formula | Numerical Integration | Lecture method, PPT | Evaluate Numerical Integration by General quadrature formula,Trape zoidal, Simpson's one- third, three-eighth rule. | -Prove that the nth divided differences of a polynomial of the nth degree are constant. - Evaluate $\int_0^1 \frac{dx}{1+x^2}$ By using simpson's 1/3 | | | 2 cm | . Poul_ | Solution of algebraic and transcendental equation, Newton Rapson method and Regular Falsi method. | Solution of algebraic and transcendental equation | Demonstration
through examples,
Problem solving
class, PPT | This paper will help in skill development in the field of Research related to Operators. | | Head
of Mathematic | | P | RINCIPAL | | | PRINCIPAL
HIA GIRLS' COLL EGI | | | irls' College
nous) , Ajmer |