SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER | Physics
LESSON Plan | |-------------------------------| | | | 2018 - 19 | | | | Submitted By:- | | Panul Compta [M. Sc. Physics] | | | | | | | #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc. I (SEMESTER I) ### Mechanics (PAPER I) (PHY 101) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 #### COURSE PLAN 2018-19 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning Outcomes | Questions | Marks
Weightage
(%) | |----------------|--|----------------|---|-------------------|--|---| | JULY | Kinematics of moving fluids, Equation of continuity, Bernoulli's theorem and its applications – atomizer Reynold's number, Stokes law, terminal velocity, Surface Energy, Excess pressure inside soap bubble, liquid drop and air bubble. Surface tension and surface energy, molecular interpretation of surface tension. Torricelli's theorem and ventruimeter. Viscous fluids, Stream line and Turbulent flow, Poiseuille's law, Capillary tube | | Giving different
examples by
relating with
nature, white
board teaching,
students-teacher
discussion, PPT
only for
Theoretical
concept | | Knowledge Based -What is Stokes Law? - Define Surface Tension. | Knowledge60
Understanding-3
Higher Order-10 | | | flow | | | | | • | |-----------|--|---|--|---|---|---| | AUGUST | UNIT II System of particles, centre of mass, centre of mass of two particles and N particles systems, energy and momentum conservation, concepts of elastic and inelastic collisions., motion of centre of mass, concept of reduced mass. | Meaning of angular
momentum, Idea of
centre of mass.
Application of
reduced mass and
calculation of
reduced mass of
different system | All derivation
clearly solved
on board ,PPT,
Discussion on
Numericals. | Calculate centre of mass of two particles system, Conservation of angular momentum. | Understanding Based -Compare types of Flow of liquidDerive Torricell's theorem. | | | | .Angular momentum of a system of particles, Conservation of angular momentum, angular momentum about an arbitrary point. | | Class test,
Problem
solving
session,
Remedial
classes | | | | | SEPTEMBER | Equation of motion of a rotating
body, kinetic energy of rotation
and idea of principles axes, Rigid
body motion. | Fundamental
knowledge of
collision
Momentum and
detail study of
principles axes. | Diagrams,
Examples,Nume
ricals,PPT | | | | | | | | | ** ** | | - | So Pearl PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Paul Head Department of Physics Sophia Girls' College (Autonomous), Ajmer ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc. II (SEMESTER III) ELECTRONICS (PHY-301) Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|--|--------------------------------------|---|--|--|---| | SEM I
JULY | UNIT I Energy bands in solids, Intrinsic and extrinsic semiconductors, carrier mobility and electrical resistivity of semiconductors, photoconduction in semiconductors, solar cell, p-n junction diode and their characteristics. | Semiconductors | PPT, Quiz,
Lecture method,
Problem solving
method. | Describe
Zener diode
and its
function as a
voltage
regulator. | Knowledge Based - what is intrinsic and extrinsic semiconductors? Give example of both. | Knowledge—60
Understanding-30
Higher Order-10 | | JULY-
AUGUST | Zener and Avalanche Breakdown, Zener diode ,Zener diode as voltage regulator, Light emitting diode(LED), Photodiode, Solar cell, p-n junction as a rectifier, half wave and full wave rectifiers (with derivation), Filters (series inductor, Shunt capacitance, L-section or choke, pie and RC filter circuits. | Application of diode as a rectifier. | Lecture method,
problem solving
method, Quiz. | | -what are filters? Explain them with their types. Understanding Based | | | | UNIT II Junction transistor, Working of NPN and PNP transistors, Three configuration of transistor (C-B, C-E, C-C modes), Common base, common emitter, and common collector characteristics of transistor. | Transistor in different configurations. | PPT, Quiz,
Lecture method,
Problem solving
method. | Compare
Transistors, | -Describe three types of configuration of Transistor. - Describe the working of JFET. | |----------------------|---|---|--|--|--| | AUGUST-
SEPTEMBER | Parameters of a transistor and their relation, D.C. load line, Transistor biasing; various method of transistor biasing and stabilization. Junction Field Effect Transistor(JFET), volt ampere relations. | Operating point of JFET. | Demonstration
through
examples | parameters and
biasing of
transistors. | | | OCTOBER | UNIT III Amplifier, Classification of Amplifiers, common base and common emitter amplifiers, coupling of amplifiers. | Amplifiers. | Lecture Method, PPT, quiz, Demonstration through examples. | -Explain R-C
coupled
amplifier. | Higher Order Thinking Skills Based - Explain different | | . Pearl | Various methods of coupling,
Feedback in amplifiers, advantages
of negative feedback, emitter
follower, distortion in amplifiers,
Resistance-Capacitance(RC)
coupled amplifier. | Negative
Feedback. | Lecture Method,
PPT, quiz,
numerical
solving method | | -Discuss feedback in
Amplifiers. | | HINCIPAL | | | | | | SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Paul. Penartment of Physics Sephia Girls' College [Autonomy appropries #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. III (SEMESTER-V) SOLID STATE PHYSICS (PHY-501) Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|-------------------|--|---|---|--| | JULY | UNIT I Crystal binding and crystal structure: Crystal bonding, lonic bonding, binding energy of ionic crystal, determination of repulsive exponent, covalent bonding, metallic bonding, molecular and vanderwall's bonding, hydrogen bonding. | Types of bonding | Lecture method,
problem solving
method, quiz | Summarise
different
bonding
between
atoms | Knowledge Based -What is Crystal bonding? -What is binding energy of ionic crystal? | Knowledge60
Understanding-30
Higher Order-10 | | JULY-
AUGUST | Space lattice and crystal structure,
Bravis lattice ,Miller indices and
crystal structure, spacing of planes
in crystal lattice, atomic packing,
simple cubical lattice structure,
face centered cubic lattice
structure, body centered cubic | Lattice structure | Lecture method,
problem solving
method | | | | | | lattice structure, X-ray diffraction(Laue's equation), reciprocal lattice and its physical significance ,reciprocal lattice vectors, reciprocal lattice to a simple cubic lattice, b.c.c. ,f.c.c. | | | | | | |---|---|--|---|---|---|--------| | AUGUST-
SEPTEMBER | Thermal properties of solids: concepts of thermal energy and phonons, internal energy and specific heat, the various theories of lattice specific heat of solids: the Einstein model, vibrational modes of continuous medium, Debye model, electronic configuration of the internal energyhence to the specific heat of metals. | Basic concept of
Einstein and
Debye model. | Group
Discussion,
Lecture method,
Quiz. | Explain
vibrational
modes of
continuous
medium of
Einstein
model. | Understanding Based -Discuss Bloch theorem. | | | SEPTEMBER-
OCTOBER CIPAL CIPAL CLS' COLLEGE | Band theory of solids: formation of bands, periodic potential of solid, wave function in periodic lattice and bloch theorem, number of states in a band, kronnig penny model, velocity of bloch electrons and dynamical effective mass, momentum, crystal momentum and | Kronnig Penny
model. | Demonstration
through
examples, PPT,
Quiz. | | -what is Effective
Mass of electron? | epmale | | | physical origin ofeffective mass, negative effective mass, concept of holes, distinction between metals, insulators, and intrinsic semiconductors. | | | | | 1 | |-----------------------|--|-----------------------------------|---|--|---|---| | OCTOBER -
NOVEMBER | UNIT III Superconductivity: Introduction, experimental features of superconductivity, the isotope effect, electron phonon interaction, the effect of superconducting transition of properties of superconductors, special features of superconducting materials,. | Superconductivit y. | Lecture Method,
PPT, quiz,
numerical
solving method. | What are cooper pairs? Explain BCS theory of superconductivity | Higher Order Thinking Skills Based - Estimate the special features of superconducting | | | NOVEMBER | Theoretical survey(basic idea), Flux quantization, BCS theory of superconductivity: cooper pairs ,high temperature superconductors(basic ideas), magnetic properties: classification of magnetic materials, origin of atomic magnetism, magnetic susceptibility, phenomenon of diamagnetism, para magnetic | Magnetic properties of materials. | Lecture Method,
PPT, quiz,
numerical
solving method | | materials. - Explain magnetic susceptibility | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Department of Physics Sophia Girls' College (Autonomous), Aimer ferromagnetism. # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. I (SEMESTER II) Waves and Oscillations (PHY-202) Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM II
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage | |--------------------|--|------------------------------|--|--------------------------------|--|---| | SEM II
DECEMBER | UNIT I Potential well and periodic oscillations, cases of harmonic oscillations, differential equations and its solutions | Theory of
Potential | Lecture method,
problem solving
method, quiz | Calculate
time
period of | Knowledge Based -What is the Periodic | (%) | | JANUARY | , Kinetic and Potential energy, Simple harmonic oscillations in- Spring and mass system, Simple and compound pendulum, Torsional pendulum, Bifilar oscillations, Helmholtz resonator, LC circuits, Vibration of magnet, Oscillation of two masses connected by a spring, Superposition of two simple harmonic motions of same frequency along the same line, Interference. | Time Period of
Oscillator | Lecture method,
problem solving
method | various
oscillators. | -What is the Periodic Oscillations? -what is the LC circuit? Understanding Based -Calculate the time period of Compound Pendulum. | Knowledge—60
Understanding-30
Higher Order-10 | | FEBRUARY | UNIT II Waves in media: Speed of | | | | Order Thinking Skills Based - Estimate the | | | A GIR | OWORS) | | Parul | | | | lead
nt of Physics | |-------|-----------------|--|----------------------------|--|---|--|-----------------------| | PRINT | ואסוי | refraction at a plane boundary of
dielectrics, Polarisation by
reflection & total internal reflection | | | | Seet | rele. | | | MARCH-
APRIL | Plane electromagnetic waves in
vacuum, Wave equation for E and
B of linearly, circularly and
elliptically polarized EMW,
Poynting vector; Reflection and | Polarisation | Lecture Method,
PPT, quiz,
numerical
solving method | light. | | | | | FEBRUARY | UNIT III Noise and Music: The human ear and its responses, limits of human audibility, intensity and loudness, bel and decibel, the musical scale, temperament and musical instruments. | Musical Scale | Lecture
Method, PPT,
quiz, numerical
solving method | Relate
Noise and
Music, its
scale and
circularly
elliptically
polarized | | | | | FEBRUARY | Standing waves: Standing waves as
normal modes of bounded systems,
Harmonics and quality of sound:
examples. Production and detection
of ultrasonic and infrasonic waves
and applications | Standing Waves | Demonstration
through
examples | in standing
waves. | ultrasonic and
infrasonic waves and
applications | | | | | transverse waves on a uniform string. Speed of longitudinal waves in a fluid, Energy density and energy transmission in Waves. Typical measurement, Group velocity and phase velocity, their measurements, superposition of waves, linear homogenous equations and the superposition principle | Superposition
Principle | Group
Discussion,
Lecture method | Explain
superpositi
on of
waves and
their
application | formula for
displacement,
velocity and find an
expression for KE
and PE
Write Method of
Production and
detection of | | #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. II (SEMESTER IV) **ELECTRONICS - II (PHY-402)** Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-------------------|---|------------------------|--|--|---|--| | SEM I
DECEMBER | UNIT I Oscillators, Principle of Oscillation, classification of oscillators, condition for self-sustained oscillation: Barkhausen criterion for oscillation, | Oscillators | Lecture method,
problem solving
method, quiz | Summarise
Oscillators and
its types. | -What is Oscillator? -What is the condition for self-sustained oscillation? | Knowledge60
Understanding-30
Higher Order-10 | | JANUARY | Tuned collector common emitter oscillator, Hartley oscillator, R-C oscillator and its advantages. | Hartley
Oscillator. | Lecture method,
problem solving
method | | | | | FEBURARY | UNIT II Logic circuits: Transistor as a Switch, logic fundamentals, AND, | 1981 | Group
Discussion,
Lecture method,
Quiz. | | Understanding Based -Disciss AND, OR. | | | NI | 4 | |---------|------| | *** | | | | + | | | • | | NEEK YE | WEST | | FEBURA | OR, NOT, NOR, NAND, XOR Gate. Boolean algebra. De Morgan's theorem, positive and negative logic, logic gates circuits realization using DTL and TTL Logic, Simplification of Boolean algebra. | Switch. DTL and TTL logic. | Demonstration
through
examples, PPT,
Quiz. | Explain
Magnetic field
and analysis of
AC circuits | NOT GatesDiscuss De-Morgan's theorem. | | |--|--|------------------------------|---|--|--|-----| | MARCE | UNIT III Circuit analysis: Networks and some important definitions, loop and nodal equations based on DC and AC circuits (Kirchhoff's Laws). | Netwoks. | Lecture Method,
PPT, quiz,
numerical
solving method. | Classify Electrostatic properties of conducts and various boundary | Higher Order Thinking Skills Based - Estimate Kirchhoff law. | | | S. Prail | Four terminal networks: current voltage conventions open, close and hybrid parameters of any four terminal network, input, output, and mutual independence for an active four terminal network. Various circuits theorems: Superposition, Thevenin, Norton, reciprocity, maximum power transfer and Miller Theorems. | Various circuit
theorems. | Lecture Method,
PPT, quiz,
numerical
solving method | conditions. | - Expain hybrid parameters of any four terminal network. | | | PRINCIPAL PHIA GIRLS' COLLE (AUTONOMOUS) AJMER | GE | Vo | uul. | | Department of Phy
Sophia Girly C-11 | ea. | **NUCLEAR PHYSICS (PHY-601)** Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM VI
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|--|---------------------|--|--|---|--| | DECEMBER | UNIT II Nuclear fission: The discovery of nuclear fission, the energy release in the fission, the fission products, mass distribution of fission products, fission cross section and threshold, neutron emission in fission, the prompt neutrons and delayed neutrons, energy of fission neutrons, theory of nuclear fission and liquid drop model. | Fission and fusion. | Lecture method,
problem solving
method, quiz | Summarise
the discovery
of Nuclear
fission. | Knowledge Based -What is Nuclear fission? -What is the principle of nuclear reactors? | Knowledge60
Understanding-30
Higher Order-10 | | JANUARY | Barrier penetration- theory of spontaneous fission, nuclear energy sources, nuclear fission as a source of energy, the nuclear chain reaction, condition of controlled chain reaction, the principle of | Nuclear reactors. | Lecture method,
problem solving
method | | | | | | nuclear reactors, classification of reactors, typical reactors, power of nuclear reactors, critical size of thermal reactors, Breeder reactors, reprocessing of spont fuel, radiation damages and fission products poisoning, uses of atomic energy. | | 1 | | | |--------------------|--|-------------------|---|----------------------------------|--| | FEBURARY | UNIT III Nuclear fission: the sources of stellar energy, the plasma: the fourth state of matter, fusion reaction, energy balance and Lawson criteria, magnetic confinement of plasma, classical plasma losses from the magnetic container, anomalous losses, turbulence and plasma instabilities. | .Lawson criteria. | Group
Discussion,
Lecture method,
Quiz. | Concept of elementary particles. | Understanding Based -Discuss Plasma as | | FEBURARY-
MARCH | Elementary particles: classification of elementary particles, fundamental interactions, unified approach(basic ideas), the conservation laws, Quarks(basic ideas), charmed and coloured quarks. | | Demonstration
through
examples, PPT,
Quiz. | | the fourth state of matterwhat are elementary particles? | | MARCH | UNIT I Nuclear properties: Rutherford's theory of particle scattering, properties of nuclei, quadrupole moment and nuclear ellipticity, Quadrupole moment and nuclear spin, parity and orbital angular momentum, parity and its conservation. | Nuclear properties. | Lecture Method,
PPT, quiz,
numerical
solving method. | Explain
Rutherford
theory of
particle
scattering. | | | |-----------------|--|---------------------|---|---|--|--| | MARCH-
APRIL | Cosmic rays: Discovery of cosmic rays, nature of cosmic rays, soft and hard, components, variation in cosmic rays – (1) Lattitude effect. (2) East-West asymmetry and directional effect. (3) Altitude effect. Detection of cosmic ray particles, origin of cosmic | Cosmic rays. | Lecture Method,
PPT, quiz,
numerical
solving method | | Higher Order Thinking Skills Based - Estimate nuclear spin, parity and angular momentum. - Explain Lattitude effect. | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Department of Physics Sophia Girla' College (Autonomous), Ajmer