SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER | V 34 32 7 1 12 | | |----------------------------------|---| COURSE PLAN | _ | | GOORGE TEAM | | | SESSION - 2019-20 | | | | _ | | B.5c - I | | | SCHESTER - III | | | M.SC CHEMISTRY SEMESTER - I, III | #### B.Sc. II (SEMESTER III) #### INORGANIC CHEMISTRY (PAPER I) (CHE-301) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext; 10 Int) Credit: 03 | SEM III
Month
SEM I | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage | |---------------------------|---|--|---|--|---|--| | JULY | UNIT I Chemistry of Elements of First Transition Series Characteristic properties of d-block elements. General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states. | Characteristic properties of first and second transition series | PPT, Flow
Charts, Quiz | Assess the chemistry of the first, second and third transition series. | Knowledge Based - Which element is radioactive in lanthanide series? - List three ferromagnetic metals. Understanding Based - Classify acids and bases | Knowledge50
Understanding-35
Higher Order-15 | | , | Chemistry of Elements of Second
and Third Transition series
General characteristics, comparative
treatment with their 3d-analogues in
respect of ionic radii, oxidation
states, magnetic behaviour, spectral
properties and stereochemistry | Comparative Periodic trends in properties of 3d, 4d and 5d series. | PPT,
Demonstration,
Flipped
Classroom. | | according to
lewis concept.
-Compare
ionic radii of
3d and 4d
transition
series. | | | AUGUST | UNIT II Coordination Compounds Werner's coordination theory and its experimental verification, effective atomic number concept, chelates, nomenclature of coordination compounds, isomerism in coordination compounds, valence bond theory of transition metal complexes. Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6), limitations of VBT | | PPT, Models,
Group
Discussions | Predict
chemical
properties of
Coordination
compounds,
Lanthanides and
Actinides. | Higher Order Thinking Skills Based -Justify that tetrahedral complexes are high spin complexesElaborate Werner's theory of coordination compounds. | | |-------------------------------|---|--|--------------------------------------|---|--|--| | | Chemistry of Lanthanides Electronic structure, oxidation states and ionic radii and lanthanide contraction, complex formation, separation of lanthanides (ion- exchange method only). | Extraction and
Properties of
lanthanides | Flow Charts,
Diagrams | | | | | | Chemistry of Actinides General features and chemistry of actinides, chemistry of separation of Np, Pu and Am from U, similarities between the later actinides and the later lanthanides. Comparison of actinides with lanthanides. | General features of
Actinides | Group
discussions | | | | | SEPTEM
BER-
OCTOBE
R | UNIT III Acids and Bases Arrhenius, Bronsted-Lowry, the Lux-Flood, solvent system and | Classification of Acids and Bases | PPT, Flow
Charts | Illustrate
oxidation
reduction
behaviour and | | | | No. | J. W. | 1 | | |---|-------|-------|--| | TO SERVICE OF THE PARTY | | 11111 | | | Lewis concepts of acids and bases. | | | aqueous and non aqueous | | |---|--|--|---|--| | Non-aqueous Solvents Physical properties of a solvent, types of solvents and their general characteristics reactions in non- aqueous solvents with reference to liquid NH ₃ and liquid SO ₂ . | Chemical reactions in non aqueous solvents | Group
discussions,
Flipped
Classroom | solvents. | | | Oxidation and Reduction Use of redox potential data- analysis of redox cycle, redox stability in water-Frost, Latimer and Pourbaix diagrams. Principles involved in the extraction of the plements. | Redox potential data
analysis | Diagrams, Flow
Charts | | | | | bases. Non-aqueous Solvents Physical properties of a solvent, types of solvents and their general characteristics reactions in non-aqueous solvents with reference to liquid NH ₃ and liquid SO ₂ . Oxidation and Reduction Use of redox potential data-analysis of redox cycle, redox stability in water-Frost, Latimer and Pourbaix diagrams. Principles involved in the extraction of the | Non-aqueous Solvents Physical properties of a solvent, types of solvents and their general characteristics reactions in non-aqueous solvents with reference to liquid NH ₃ and liquid SO ₂ . Oxidation and Reduction Use of redox potential data-analysis of redox cycle, redox stability in water-Frost, Latimer and Pourbaix diagrams. Principles involved in the extraction of the | Non-aqueous Solvents Physical properties of a solvent, types of solvents and their general characteristics reactions in non-aqueous solvents with reference to liquid NH ₃ and liquid SO ₂ . Chemical reactions in discussions, Flipped Classroom Group discussions, Flipped Classroom Redox potential data analysis of redox cycle, redox stability in water-Frost, Latimer and Pourbaix diagrams. Principles involved in the extraction of the | Non-aqueous Solvents Physical properties of a solvent, types of solvents and their general characteristics reactions in non-aqueous solvents with reference to liquid NH ₃ and liquid SO ₂ . Chemical reactions in discussions, Flipped Classroom Classroom Redox potential data analysis of redox cycle, redox stability in water-Frost, Latimer and Pourbaix diagrams. Principles involved in the extraction of the | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Chemistry Sophia Girls' College (Autonomous), Ajmer over # SOPIHA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.SC CHEMISTRY (PREVIOUS) SEMESTER I (M.Sc PREV) PHYSICAL CHEMISTRY- I (CHEM-103) MAX MARKS: 100(70EXT; 30 INT) MIN. MARKS: 40(28 EXT;12 INT) | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcome
s | Questions | Marks
Weightage
(%) | |---------------|---|---|----------------------|--|---|--| | SEM I
JULY | UNIT I Schrodinger equation, harmonic oscillator, the rigid rotor, the hydrogen atom. Applications of variation method and perturbation theory to the Helium atom. Huckel theory of conjugated systems, bond order and charge density calculations. Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene etc. | Quantum Chemistry Molecular Orbital Theory | Demonstration, PPT | -Predict
aspects of
Quantum
Chemistry | Knowledge Based -What do you mean by Ionic Strength? Give suitable Example Define Activity. Understanding Based -Discuss | Knowledge25
Understanding-45
Higher Order-30 | | AUGUST | Concept and determination of fugacity Non-ideal | | PPT , Diagrams | Summarize | generalized
method for | | | | | systems, Excess functions, Activity, Activity coefficient and their determinations, Debye Huckel theory; ionic strength. Application of phase rule to three component system – acetic acid + chloroform + water. | | | various
concepts of
thermodyna
mics and
phase rule. | determination of Fugacity? - State Phase rule. Higher Order Thinking Skills Based | | |--|---------------------------|---|--|---------------------|---|--|---| | * | SEPTEMBE
R-
OCTOBER | UNIT III Collision theory of reaction rates, activated complex theory, ionic reactions, kinetic salt effects, kinetic and thermodynamic control of reactions, methods of determining mechanism, isotope effects. Dynamic chain , photochemical reactions, acid base | Kinetics of various chemical reactions | Diagrams
,Charts | Assess the kinetics of various chemical reactions. | - Explain Lindemann theory of unimolecular reactions Elaborate the kinetics of photochemical hydrogen- bromine reaction. | | | PRINCII
OPHIA GIRLS
(AUTONOM
AJME | COLLEGE
MOUS) | catalysis, kinetics of enzyme reactions, fast reactions, , dynamics of unimolecular reactions (Lindemann Theory, Hinshelwood Modifications). | | 0 | | D | Head epartment of Chemistry Sophia Girls' College | COURSE_PLAN_2019-20_MS_LAVEENA_GULABCHANDANI Modifications). Department of Chemistry Sophia Girls' College (Autonomous), Ajmer ### SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.SC CHEMISTRY (FINAL) SEMESTER III (M.Sc. F) #### SPECTROSCOPY (CHEM-301) MAX. MARKS: 100 (70 EXT; 30 INT) MIN. MARKS: 40 (28 EXT;12 INT) | SEM/
Month | Unit/Topic | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|---|--|---------------------------|--|---|--| | SEM III
JULY | Unit- I Difficulties and solution for recording ¹³ C -NMR spectra, ¹³ C - ¹ H coupling constant-proton coupled and decoupled, ¹³ C spectra- decoupling technique. Chemical shift calculations for alkanes, alkenes, alkynes and aromatic compounds. Nuclear Overhauser Effect, ¹³ C-DEPT Spectra. | Theoretical and practical essence of ¹³ C –NMR Spectroscopy | Diagrams, PPT,
Charts. | Analyse various
aspects and
phenomenon of
¹³ C - NMR
spectroscopy | Knowledge Based - Why ¹³ C is NMR active while ¹² C is not? - Define base peak. Understanding Based - Compare ¹³ C- NMR and ¹ H- NMR spectroscopyAnalyze shielding and deshielding of protons in ¹ H- NMR. | Knowledge25
Understanding-45
Higher Order-30 | | AUGUST | Unit-II Introduction, ion production chambers, factors affecting fragmentation, ion analysis abundance. Mass spectral fragmentation, molecular ion peak, metastable peak, Me Lafferty rearrangement, Nitrogen rule, High Resolution Mass Spectrometry. | Instrumental and spectral aspects of Mass Spectroscopy | Quíz, Diagrams,
Models | Elaborate mass spectroscopy | Higher Order Thinking Skills Based - Elaborate the use of ¹³ C- spectra in differentiating the primary, secondary and tertiary carbons by DEPT- 45, DEPT-90 and DEPT- 135 spectra. | |-----------------------|---|--|---------------------------|---|---| | SEPTEMBER
-OCTOBER | Unit-III UV-Visible, IR, ¹ H- NMR, ¹³ C- NMR, MASS-interpretation of common organic compounds. | Applications of spectroscopy | PPT, Flow charts | Determine the
structure of
different organic
compounds with
the help of
spectroscopic
data. | - Explain High
Resolution Mass
Spectrometry
(HRMS) in detail. | DEINCIDAL PROPERTY PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Chemistry Sophia Girls' College (Autonomous), Ajmer Source ## SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.SC CHEMISTRY (FINAL) Practical (CHEM-305) | | | Tactical | (CHEM-303) | | | | |-----------------|--|---|--|--|--|--| | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage
(%) | | SEM III
JULY | INORGANIC PREPARATIONS Prepare sodium amide Prepare calcium oxalate Prepare magnesium oxalate Prepare sodium tetrathionate Na ₂ S ₄ O ₆ Prepare vanadyl acetylacetonate Vo (acac) ₂ Prepare Fe (acac) ₂ Prepare R ₂ S ₁ (acac) ₂ Prepare Cr(acac) ₂ Prepare Cu (acac) ₂ H ₂ O Prepare Al(acac) ₃ Prepare tris (acetyl acetanato) manganese(II) Prepare Fe (II) chloride Prepare copper glycine complex. | Methods of Synthesis of various inorganic compounds | Instruments like pH meter, Glassware, Diagrams | Understand
the practical
applications of
various
aspects of
chemistry | Knowledge Based Practical File Work Understanding Based -To study the effect of addition of an electrolyte on the solubility of an organic acidTo separate nad identifify the components of the given organic ternary mixture. Higher Order Thinking Skills Based -Viva-Voce | Knowledge20
Understanding-40
Higher Order-40 | | WEEK NE WHICH | | | | | | | | J | |---------------|--------|---|------------------------|------------------|-------------------------|--------------------------|------------------|---| | • | SEPTEM | A. PHYSICAL | Use of various | Instruments like | Understand | <u>Knowledge</u> | | | | | BER- | Determine the partial molar | instruments like | pH meter, | the practical | <u>Based</u> | | | | | OCTOBE | volume of solute and | colorimeter, pH meter. | Glassware, | applications of various | Practical File | Vladas 20 | | | | R | solvent in a binary mixture | | Diagrams | aspects of | Work | Knowledge20 | | | | | Study the effect of addition | | | chemistry | | Understanding-40 | | | | | of an electrolyte on the | | | Chemstry | Understanding | Higher Order-40 | | | | | solubility of an organic acid. | | | | <u>Based</u> | | | | | | Determine the composition | | | | Transcript to the second | | | | | | of binary mixture containing | | | | -To study the | | | | | | K2Cr2O7 and KMnO4 | | | | effect of | | | | | | using spectrophotometer. | | | | addition of an | | | | | | Determine the heat of | | | | electrolyte on | | | | | | neutralization of | | | | the solubility | | | | | | hydrochloric acid by sodium | | | | of an organic | | | | | | hydroxide. | | | | acid | | | | | | Determine the heat | | | | | | | | | | neutralization of two acids | | | | Higher Order | | | | | | eg HCl and CH3COOH and | | | | Thinking Skills | | | | | | hence their relative | | | | <u>Based</u> | | | | | | strengths. | | | | | | | | | | Study the adsorption of | | | | -Viva- Voce | | | | | | iodine form alcoholic | | | | | | | | | | solution on charcoal | | | | | | | | | | Determine the rate constant | | | 1 | | | | | | | of a reaction between | | | | | | | | | | acetone and iodine in | | | | | | | | | | presence of mineral acid | | | | 1 | | | | | | 1 | | | | | | | | | | and a catalyst and to show
that this reaction is of zero | order with respect to iodine. | | | | | | | | | | Verify Beer's law for the | | | | | | | | | | solubility and determine the | | 1 | | | L | | | | | | | | | | | | | unknown aqueous solution
of KMnO4 | | Tour | |---|---------|---| | PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
AJMER | | Department of Chemistry Sophia Girls' College (Autonomous), Ajmer | | AJMEK | lawrent | | | | | | | | | | | | | | | COURSE PLAN | |---------------------------------| | COUNSTILAN | | SESSION - 2019-20 | | B.Sc - TT (SEMESTER - V) | | M.Sc. CHEMISTRY SEMESTER-II, IV | | | | | | | | | | | | | #### B.Sc. II (SEMESTER IV) #### PHYSICAL CHEMISTRY (PAPER I) (CHE-401) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext; 10 Int) Credit: 03 | SEM IV
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage | |--|---|---|---|---|---|--| | SEM IV
DECEM
BER-
JANUAR
Y | UNIT I Thermodynamics-I First Law of Thermodynamics: Statement, internal energy and enthalpy,heat capacities at constant volume and constant pressure and their relationship. Calculation of w, q, dU, & dH for the expansion of ideal gases. Thermochemistry standard state, standard enthalpy of formation-Hess's Law, Heat of reaction at constant pressure and | Basic concepts of thermodynamics Basic concepts of thermochemistry | PPT, Flow
Charts, Quiz
PPT, Quiz
Demonstration,
Flipped
Classroom. | To Compare
and apply
various
concepts of
Thermodynamic
s and
electrochemistry | Knowledge Based - What is Arrhenius theory? - Define corrosion. Understanding Based - Derive Joule Thomson CoefficientGive the relationship between Cp | Knowledge50
Understanding-35
Higher Order-15 | | | at constant volume, Enthalpy of
neutralization, Kirchhoff's
equation. | | | | and Cv. | | | | Thermodynamics-II Second law of thermodynamics, Carnot cycle, Carnot theorem, Concept of entropy: entropy as a | Basic concepts of second and third laws of thermodynamics | Group
Discussions,
Flipped
Classrooms | | Higher Order Thinking Skills Based - Discuss | | | | state function, Entropy change in ideal gases and mixing of gases. Third law of thermodynamics: Nernst heat theorem, Gibbs and Helmholtz functions; Gibbs function (G) and Helmholtz function (A) as thermodynamic quantities, Variation of G with A with P, V and T. | | | | Debye-Huckel-
Onsager's
equation for
strong
electrolytes.
-Discuss
transport
number. | | |--------------|---|---|--------------------------------------|---|---|--| | FEBRUA
RY | UNIT II Electrochemistry-I Electrical transport, specific conductance and equivalent conductance and their measurement, Kohlrausch law, Arrhenius theory of electrolyte dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law its uses and limitations. Debye-Huckel-Onsager's equation for strong electrolytes, Transport number, Applications of conductivity measurements in determination of degree of dissociation, Ka of acids, solubility product of a sparingly soluble salt, ionic product of water, hydrolysis constant of a salt, | Understanding of various types of conductances and laws | PPT, Models,
Group
Discussions | To summarize various types of conductances and laws of electrochemistry and their applications. | | | | | conductometric titrations. | | | | | | |--|---|--|---|---|--|--| | MARCH
-APRIL | UNIT III Electrochemistry-II Types of reversible electrodes-gasmetal ion, metal-insoluble salt anion and redox electrodes. Electrode reactions, Nernst equation, standard hydrogen electrode, reference electrodes, standard electrode potential, sign conventions, electrochemical series and its significance. Electrolytic and Galvanic cells-reversible and irreversible cells, conventional representation of electrochemical | Understanding of
various types of
electrodes and
electrolytic and
galvanic cells and their
applications and
concept of corrosion | Pt 1, Flow
Charts, Models,
Group
Discussions | Illustrate of
various types of
cells and
application of
concentration
cells. | | | | ari
Ga
irr
re
ce
me
EN
qu | nd its significance. Electrolytic and alvanic cells-reversible and reversible cells, conventional | | | | | | | | hydrogen over voltage. Concentration cell with and without transport, liquid junction potential, application of concentration cells, pH determination using hydrogen | 1.5 | ** | | | | | *** | | | | |-------------------|---|--------|--| | | qualitative treatment (acid-base and oxidation-reduction only). Corrosion- Types, theories & methods of combating it | | | | | r Pearl | | Head Department of Chemistry Sophia Girls' College | | SOPHIA G
(AUT) | RINCIPAL
IRLS' COLLEGE
ONOMOUS)
AJMER | 2 | (Autonomous), Ajmer | | | | avenue | | | | | , | | # SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.Sc. CHEMISTRY (PREVIOUS) SEMESTER II (M.Sc PREV) PHYSICAL CHEMISTRY- II (CHEM-203) MAX MARKS: 100(70EXT; 30 INT) MIN. MARKS: 40(28 EXT;12 INT) | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcome
s | | Marks
Weightage
(%) | |--------------------------------|---|---|-----------------------|--------------------------------|--|--| | SEM II
DECEMBER-
JANUARY | Unit I Electrochemistry Electrochemistry of solutions, Debye-Huckel-Onsager treatment and its extension, ion solvent interactions. Debye-Huckel-Bjerrum model. Semiconductor interfaces-theory of double layer at semiconductor, structure of double layer interfaces. Effect of light at, semiconductor solution | Concepts of Electrochemistry, Overpotential and Corrosion | Demonstration,
PPT | Explain the electrochemi stry. | Knowledge Based - Define Polarography What are micelles? Understanding Based - Discuss Tafel theory of Overpotential Describe the | Knowledge25
Understanding-45
Higher Order-30 | | FEBRUARY | Unit II Surface Chemistry 1. Adsorption Pressure difference across curved surface (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, estimation of surface area (BET equation without derivation), mechanism of surface catalytic | Phenomenon of adsorption and Micelles | PPT , Diagrams | Summarize
the concepts
of adsorption
and micelles. | - Elaborate the low and high Overpotential cases of Butler-Volmer Equation Explain the mechanism of Polymerisation. | | |----------|--|---------------------------------------|----------------|---|---|--| | | interface. Overpotentials, exchange current density, derivation of Butler-Volmer equation, Tafel Plot. Polarography theory, Ilkovic equation; half wave potential and its significance. Corrosion – Types, mechanism and inhibition. | | | | effect of nature of surfactant on Critical micelle concentration. Higher Order Thinking Skills Based - Elaborate the | | | 3 | | | | | | _ | |-----------------|---|---|---------------------|--|---|---| | | 2. Micelles Surface active agents, classification of surface active agents, micellization, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, counter ion binding to micelles, thermodynamics of micellization, solubilization, micro emulsion, reversemicelles. | | | | | | | MARCH-
APRIL | Unit III Macromolecules: Polymer- definition, types of polymers, electrically conducting, fire resitant, liquid crystal polymers, kinetics of polymerisation, mechanism of polymerisation. Molecular mass, number and mass average molecular mass, | Mechanism of polymerisation and chain configuration of macromolecules | Diagrams,
Charts | Assess the chemistry of macromolec ules. | Ų | | | molecular mass | | | |----------------|--|--| | molecular mass | | | | |---------------------------|--|---|------| | determination (osmometry, | | | | | viscometry, diffusion), | | | | | sedimentation, chain | | | | | configuration of macro | | | | | molecules, calculation of | | | | | average dimensions of | | | | | various chain structures. | | | | | | | | | | | | | | | | | V | 1082 | So Pearl PRINCIPA* SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Chemistry Sophia Girls' College (Autonomous), Ajmer laver ## SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.Sc. CHEMISTRY (FINAL) GROUP-A INORGANIC CHEMISTRY SEMESTER IV #### SUPRAMOLECUALR CHEMISTRY - CHEM-402(A) MAX MARKS: 100 (70EXT; 30 INT) MIN. MARKS: 40 (28 EXT;12 INT) | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------------------|--|--|---------------------------|---|---|--| | SEM IV
DECEMBER-
JANUARY | Introduction- Definition and development of Supramolecular Chemistry, Classification of Supramolecular Host- Guest Compunds, receptors, Nature of Supramolecular Interactions- Ion-Ion Interactions, Ion-dipole Interactions, Dipole- Dipole interaction, Hydrogen bonding, Cation- interaction, Anion-interactions, - interactions, vander wall forces and Crystal Close packing, Closed shell Interactions | Supramolecular
Host- Guest
Chemistry | Diagrams, Flow
Charts. | Analyse different aspects of supra molecular chemistry. | Knowledge Based - What [σ ∩ ρ] and [σ /ρ] represents? - Draw a Flow Diagram showing receptor substrate interaction to form molecular and Supramolecular devices. Understanding Based | Knowledge25
Understanding-
45
Higher Order-
30 | | Sr Pearl | Supra molecular reactivity and catalysis-Introduction, Catalysis by cation, anion and metalloreceptor molecules, catalysis with Cyclophane type receptors, Co catalysi- synthetic reaction catalysis, Bimolecular and abiotic catalysis. Transport processes and carrier design- carrier mediated transport, cation, anion transport process, | Flow Charts
,Flipped
Classrooms
Diagrams,
Demonstration. | supramolecular
reactivity and
catalysis. | - Illustrate catalysis by anion receptor molecules. | |----------|--|--|--|---| | FEBRUARY | Introduction to recognition, information and complementarity, Principle of molecular receptor designs, Spherical recognition, Tetrahedral recognition, Recognition of ammonium ions and neutral molecules, multiple recognition by coreceptor molecules. Unit-II | Plipped
Classrooms | Assess | Coupled transport in a pH gradient. - Explain π- π interactions in Supramolecular Species. Higher Order Thinking Skills Based - Elaborate Tetrahedral Recognition. | ## SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.Sc. CHEMISTRY (FINAL) GROUP-A INORGANIC CHEMISTRY SEMESTER IV #### **INORGANIC POLYMERS - CHEM - 403(A)** MAX MARKS: 100 (70EXT; 30 INT) MIN. MARKS: 40 (28 EXT;12 INT) | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------------------|---|--|---------------------------|---|--|--| | SEM IV
DECEMBER-
JANUARY | Unit-I Basics Concepts Definition, Classifications by Connectivities, Classifications by Dimensionality, the Metal/Backbone Classification of Metal-Containing Polymers. | Basic Concepts and
Classification and | Diagrams, Flow
Charts. | Elaborate basic concepts and synthesis of Inorganic polymers. | Knowledge Based Define Inorganic Polymers. - Write Svedberg Equation. Understanding Based - Summarize Ebulliometry for | Knowledge25
Understanding-
45
Higher Order-
30 | | | Inorganic Polymer Synthesis Step Growth synthesis, Chain Polymerization, ring opening polymerization, Reductive coupling and other Redox Polymerisation reactions. | Synthesis of Inorganic polymers. | Diagrams, PPT,
Flipped
Classrooms | | determination of molar mass. -Discuss general mechanism of Anion and Radical Ring Opening Polymerization. Higher Order Thinking Skills Based - Elaborate Step Addition synthesis | |----------|---|---|--|---|--| | FEBRUARY | Inorganic Polymer Characterization Average Molecular Masses and Degrees of Polymerization, Methods of Characterizing Average Molecular Masses- Gel Permeation Chromatography, Viscosity, Universal Calibration, Colligative Properties (Vapor Pressure Lowering, Boiling Point Elevation, Melting Point Lowering, and Osmotic Pressure), End-Group Analysis, Mass Spectroscopy, | Determination of
molecular weight of
Inorganic Polymers | Diagrams,
Flow Charts
,Flipped
Classrooms | Analyse the
Chemical nature
of polymers | of Inorganic Polymers. - Explain Preparation and properties of Silicones | | | | Ultracentrifugation. | | | | | | |-----|--------------------|---|--|----------------------------------|--|--|---| | | | Analysis and. testing of polymers
Chemical analysis of polymers,
spectroscopic methods. X-ray
diffraction study, microscopy.
thermal analysis and physical
testing-tensile strength. Fatigue,
impact, tear resistance. hardness and
abrasion resistance. | analysis of polymers. | Diagrams, Demonstration. | | | | | | MARCH-
APRIL | Unit-III Polymers based on Boron – Borides, Carborane Polymers, Borazine, Boron Nitride | Chemistry of Boron
polymers | PPT, Diagrams,
Demonstration. | Summarize the
Properties of
Inorganic
Polymers. | | | | | | Polymers based on Silicon-
Silicones- Preparation and properties
of Silicones, Silicone Fluids,
Silicone Rubbers, Silicone Resins,
Modification of Silicones | Preparation,
properties and
structure of Silicon
Polymers | Group
Discussion,
Diagrams | | | | | | In Park PRINCIPAL | Polysilanes and related polymers-
Structure, Synthesis, Physical and
electronic properties of polysilanes,
Chemical modification of
Polysilanes, Other Silicon | | | | [a9c] | | |)PH | AUTONOMOUS) AJMER | Polysilanes, Other Silicon
Containing Polymers | | lovient | | Head Department of Chemistr Sophia Girls College | 4 | #### SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.SC CHEMISTRY (FINAL) PRACTICALS (CHEM-405) (FOR GROUP -A,B,C) | SEM/ | UNIT/TOPIC | Concepts/facts | Teaching | Learning | Questions | Marks Weightage | |-----------------|---|--------------------------------------|-------------------------------|--|---|--| | Month | | | Pedagogy | Outcomes | | (%) | | SEM III
JULY | INORGANIC CHEMISTRY Chromatographic Separations (Any Three) Cadmium and Zinc. Zinc and Magnesium Separation and identification of the sugars present in the given mixture of glucose, fructose and sucrose by paper Chromatography and determination of Rr values. Separation and identification of Pb and Cd by Paper Chromatography and determination of Rr values. | Separation of mixtures of metal ions | Demonstration of the Exercise | Understand
the practical
applications of
various
aspects of
chemistry | Knowledge Based Practical File Work Understanding Based -To Separate and identify of Pb and Cd by Paper Chromatogra phy and determination of RevaluesTo Isolate of caffeine from tea leaves. Higher Order Thinking Skills Based -Viva- Voce | Knowledge20
Understanding-40
Higher Order-40 | | AUGUST | ORGANIC CHEMISTRY Extraction of organic compound from natural source Isolation of caffeine from tea leaves. Isolation of casein from milk Isolation of lactose from milk Isolation of piperine from black pepper. Isolation of lycopene from tomatoes. Isolation of -carotene from carrots. Spectroscopy Identification of organic compounds by the analysis of their spectral | Extraction and
Spectroscopic
determination of
Organic Compounds | Spectra, Use of glassware like separating funnel and Distillation assembly | | | |-------------------------------|--|--|--|--|--| | SEPTEM
BER-
OCTOBE
R | data (UV, IR, PMR). PHYSICAL CHEMISTRY • Determination of pKa of indicator (e.g. Phenolpthalein). • Determination of stoichiometry and stability constant of inorganic (e.g.ferric-salicyclic acid) organic | Instrumentation | Exercises with Use of different Apparatus, instruments like pH meter, conductivity meter | | | | SOPHIA GIRLS
(AUTONO
AJM | S' COLLEGE
MOUS) | Concord | (Autonomous), Ajmer | |--------------------------------|--|---------|--| | PRINC | PAL | | Department of Chemistry
Sophia Girls' College | | | and HCI. iii. A solution of Oxalic acid and CH ₃ COOH | | 1021 | | | acid. ii. A solution of Oxalic acid | | | | | in the following solutions. i. A solution of pure Oxalic | | | | | To estimate oxalic acid by carrying out suitable | | | | | liquids, water-acetic acid, acid-chloroform system. | | | | | To obtain solubility curve
for a ternary system of | | | | | complexes by electronic and IR spectral data. | | | | | (e.g. amine and iodine) complexes. • Characterisation of | | |