


#### SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER





| COURSE PLAN                               |
|-------------------------------------------|
|                                           |
| SESSION - 2019 - 20                       |
| N. C. |
| BSC- Pt - 7, I                            |
|                                           |
| SEMESTER - I                              |
| SEMESTER - II<br>PRACTICALS - SEM-IV      |
| N .                                       |
| MSC SEMESTER- II, IV                      |
|                                           |
| 8                                         |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
| Wa. 2                                     |
| Качипа Денна                              |
|                                           |
| Dept. of Chemistry                        |
|                                           |
|                                           |



## SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) B. Sc. I (SEMESTER II)

#### PHYSICAL CHEMISTRY (PAPER I) (CHE-201)

Max. Marks: 75 (50 Ext; 25 Int)

Min. Marks: 30(20 Ext; 10 Int)

Credit: 03

| SEM II<br>Month                | UNIT/TOPIC                                                                                                                                                                                                                                                                                        | Concepts/facts                                  | Teaching<br>Pedagogy                 | Learning<br>Outcomes                                                          | Questions                                                                                                                                                 | Marks<br>Weightage<br>(%)                          |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| SEM II<br>DECEMBER<br>-JANUARY | UNIT I Solid State Definition of space lattice, unit cell. Laws of crystallography Symmetry elements in crystals. Wiess parameter system, ,Millar's indices. X-ray diffraction by crystals. Derivation of Bragg's equation. Determination of crystal structure (Laue's method and powder method). | Laws of crystallography, and symmetry elements. | PPT, Chart,<br>Visual 3- D<br>Models | Predict<br>properties of<br>solid state and<br>colloidal states<br>of matter. | Knowledge Based -Define Unit cellIllustrate law of rational Indices  Understanding Based -Compare Miller and Weiss parametersDerive Vander Wall Constants | Knowledge60<br>Understanding-30<br>Higher Order-10 |
|                                | Colloidal State  Definition and classification of colloids. Solids in liquids (sols): properties- kinetic, electrical, electrosmosis; stability of colloids, precipitation of colloid, protective action, Hardy-Schulze law, gold number. Liquids in liquids (emulsions);                         | Properties of Colloids                          | Flow Chart,<br>Diagram, Quiz         |                                                                               | Higher Order Thinking Skills Based -Discuss application of ColloidsExplain Maxwell's distribution of molecular velocities.                                |                                                    |

|          | types of emulsions, preparation & application, deemulsification, Emulsifier. Liquids in solids (gels): classification, properties and application, general applications of colloids.                                              |                                                               |                            |                                                         |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|---------------------------------------------------------|--|--|
| FEBRUARY | UNIT II  Gaseous States  Kinetic theory of gases, Deviation of real gases from ideal behaviour, causes of deviation, Vander Waals equation of state.                                                                              |                                                               | Demonstration,<br>PPT      | Review<br>various<br>phenomenon<br>of gaseous<br>state. |  |  |
|          | PV isotherms of real gases, continuity of states, relationship between critical constant and Vander Waals constants, calculation of Vander Waal's constant, law of corresponding states, reduced equation of state.               | Critical Phenomenon of real gases                             | Flipped<br>Classroom, Quiz | state.                                                  |  |  |
|          | Molecular velocities: Root mean square, average and most probable velocities, Qualitative discussion of the Maxwell's distribution of molecular velocities, collision number, mean free path and collision diameter, Liquifaction | Velocity of gaseous<br>molecules and Maxwell<br>Boltzmann law | Group<br>discussions       |                                                         |  |  |



| MARCH- | UNIT III                         | Solutions, Dilute         | PPT, Chart, |                |   |     |
|--------|----------------------------------|---------------------------|-------------|----------------|---|-----|
| APRIL  | Types of solution, Ideal         | Solutions and Colligative | Diagrams.   |                |   |     |
|        | solutions and Raoult's law,      | Properties                |             | Summarize      |   |     |
|        | deviations from Raoult's law -   |                           |             | the properties |   |     |
|        | non-ideal solutions, activity    |                           |             | of dilute      |   |     |
|        | and activity coefficient. Dilute |                           |             | solutions and  |   |     |
|        | solution, colligative            |                           |             | explain        |   |     |
|        | properties, relative lowering    |                           |             | colligative    |   |     |
|        | of vapour pressure, Osmosis,     | *                         |             | properties.    |   |     |
|        | Elevation of boiling point and   |                           | h .         |                |   |     |
|        | depression in freezing point.    |                           |             |                |   |     |
|        | Experimental methods for         |                           |             |                |   |     |
|        | determining various colligative  |                           |             | 1              |   |     |
|        | properties. Abnormal molar       |                           |             |                |   |     |
|        | mass, degree of dissociation     |                           | 1           |                |   |     |
|        | and association of solutes.      |                           |             |                |   |     |
|        |                                  | Jamasara                  |             |                | † | 093 |

PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
AJMER

Head
Department of Chemistry
Sophia Girls' College
(Autonomous), Ajmer



### B.Sc. II (SEMESTER IV)

#### PRACTICALS (CHE-403)

Max. Marks: 50(40Ext; 10 Int)

Min Marks: 20(16 Ext;4 Int)

Credit: 02

| SEM<br>Month                       | UNIT/TOPIC                                                                                                                                                                                                                                                                                                                                            | Concepts/facts                                            | Teaching<br>Pedagogy          | Learning<br>Outcomes                                                                 | Questions                                                                                                                                                                                                                                       | Marks<br>Weightage<br>(%)                    |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| SEM IV<br>DECEMBE<br>R-<br>JANUARY | Organic Chemistry  (A) Chromatography  (i) Separation , Rf values and identification of organic compounds.  (ii) Preparation and separation of 2,4-dinitrophenylhydrozone of acetone,2- butanone, hexan-2- and 3-one using toluene and light petroleum (40:60:).  (iii) Separation of a mixture of dyes using cyclohexane and ethyl acetate (8.5:1.5) | Separation of organic compounds by chromatographic method | Demonstration of the exercise | Understand<br>the practical<br>applications of<br>various<br>aspects of<br>chemistry | Knowledge Based Practical File Work  Understanding Based -To identify the given organic compound.  - To determine the transition temperature of the given substance by thermometric method (MnCl <sub>2</sub> ,4H <sub>2</sub> O)  Higher Order | Knowledge30 Understanding-50 Higher Order-20 |



| FEBRUAR<br>Y | (B) Qualitative Analysis  Identification of an organic compound through the functional group analysis, determination of melting point and preparation of suitable derivatives.                                                                                                                                                                                                                                                                                                                                                                         | Identification of an organic compound                                               | Demonstration of the exercise                                                           |     | Thinking Skills Based Viva Voce |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|---------------------------------|--|
|              | Physical Chemistry (Any Four)  1. Determination of the transition temperature of the given substance by thermometric method (e.g. MnCl <sub>2</sub> , 4H <sub>2</sub> O/SrBr <sub>2</sub> . 2H <sub>2</sub> O)  2. To study the effect of a solute(e.g. NaCl, succinic acid) on the critical solution temperature of two partially miscible liquids (e.g. phenolwater system) and to determine the concentration of that solute in the given phenol-water system.  3. To construct the phase diagram of two component (e.g. diphenylaminebenzophenone) | Determination of<br>the transition<br>temperature,<br>enthalpy of<br>neutralization | Exercises with<br>Use of different<br>Apparatus and<br>Demonstration of<br>the exercise | 101 |                                 |  |

| PRINCIPAL<br>PHIA GIRLS' COL<br>(AUTONOMOUS<br>AJMER | LEGE                                                                                                                     |               | Department of Chemistry<br>Sophia Girls' College<br>(Autonomous), Ajmer |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|--|
| e D                                                  | base/strong acid and determine the enthalpy of ionization of the weak acid/weak base.                                    | Lauristanisa. | Head                                                                    |  |
|                                                      | 5. To determine the enthalpy of neutralization of a weak acid/weak base versus strong                                    |               |                                                                         |  |
|                                                      | 4. To determine the solubility of benzoic acid at different temperatures and to determine DH of the dissolution process. |               |                                                                         |  |
|                                                      | system by cooling curve method.                                                                                          |               |                                                                         |  |



## SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.Sc. CHEMISTRY (PREVIOUS) SEMESTER II

#### GROUP THEORY AND SPECTROSCOPY (CHEM-204)

MAX. MARKS: 100 (70 EXT; 30 INT)

MIN. MARKS: 40 (28 EXT;12 INT)

| SEM/<br>Month                  | Unit/Topic                                                                                                                                                                                                                                                                                    | Concepts/facts             | Teaching<br>Pedagogy        | Learning<br>Outcomes                                         | Questions                                                                                                                                                                                     | Marks Weightage                                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| SEM II<br>DECEMBER<br>-JANUARY | Symmetry and Group theory in Chemistry Symmetry elements and Symmetry operation, definitions of group, sub- group, relation between orders of finite group and its subgroup, Conjugacy relation and classes. Point symmetry group. Group multiplication table (C <sub>2</sub> C <sub>2h</sub> | Symmetry and Group theory. | Diagrams,<br>Tables, Chart. | Interpret the symmetry and group theory in chemical science. | Knowledge Based -What are the basic principles of ESR? -State Mutual exclusion principle.  Understanding Based -Differentiate between Plane of symmetry and Axis of symmetryExplain Resonance | Knowledge-25<br>Understanding-45<br>Higher Order-30 |

|       | C <sub>2V</sub> , C <sub>3V</sub> )                                                                                                                                                                                                                                   |                                          |               | Raman effect.                                                                                                                                                    |                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|       | Raman Spectroscopy  Classical and quantum theories of Raman effect. Pure rotational, vibrational and vibrational-rotational Raman spectra, selection rules, mutual exclusion principle. Resonance Raman spectroscopy, coherent anti Stokes Raman spectroscopy (CARS). | Raman Spectroscopy and its applications. | PPT, Diagrams | Higher Order Thinking Skills Based - Construct group multiplication table of C <sub>3</sub> v using appropriate exampleDerive classical theory of Raman effect.s |                                           |
| PRINC | PLANL<br>S' COLLEGE                                                                                                                                                                                                                                                   | Aam                                      |               | Denartme                                                                                                                                                         | Head<br>nt of Chemistry<br>Girls' College |

| FEBRUARY | Unit - II                                                                                                                                                                                                                                                                                                                                                                                 |                                               |            |                                                       |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|-------------------------------------------------------|--|
| PEDRUARY | Molecular spectroscopy Energy levels, molecular orbitals, vibrational transitions, vibration progression and geometry of the excited states, Franck- Condon Principle, electronic spectra of polyatomic molecules, Emission spectra, radiative and non-radiative decay, internal conversion, spectra of transition metal complexes, charge- transfer                                      | Molecular spectra                             | PPT, Chart | Analyse the molecular and photoelectron spectroscopy. |  |
|          | Photoelectron spectroscopy Basic principles, photo- electric effect, ionization process, Koopman's theorem. Photoelectron spectra of simple molecules. ESCA. Chemical information from ESCA. Auger electron spectroscopy-basic idea. Photoacoustic Spectroscopy: Basic principle of photoacoustic spectroscopy(PAS), PAS- gases and condensed systems, chemical and surface applications. | Photoelectron and Photoacoustic spectroscopy. |            |                                                       |  |

| APRIL                                       | UNIT - III                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                       |                                                  |                                                                        |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|
|                                             | Electron Spin Resonance Spectroscopy Basic principles, zero field splitting and Kramer's degeneracy, "g" value, factors affecting the "g" value Hyperfine splitting, Hyperfine coupling constant, Isotropic and anisotropic hyperfine coupling constants, application to study of free radicals, determination of oxidation state of metal and to transition metal complexes(having one unpaired electron) including | Concept of electron spin resonance spectroscopy | 3-D Models,<br>Match the<br>following | Assess the electron spin resonance spectroscopy. |                                                                        |
| PRITIC<br>OPHIA GIRLS'<br>(AUTONOM<br>AJMER | IOUS)                                                                                                                                                                                                                                                                                                                                                                                                                | Jauma                                           | W                                     |                                                  | Head Department of Chemistry Sophia Girls' College (Autonomous), Ajmer |



#### SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.Sc. CHEMISTRY (FINAL) SEMESTER IV

## GROUP-B ORGANIC CHEMISTRY ORGANOMETALLICS AND DISCONNECTIONS -CHEM-401(B)

MAX. MARKS: 100 (70 EXT; 30 INT)

MIN. MARKS: 40 (28 EXT;12 INT)

| SEM/<br>Month                  | Unit/Topic                                                                                                                                                                                                                              | Concepts/facts                                                                                               | Teaching<br>Pedagogy      | Learning<br>Outcomes                                  | Questions                                                                                                                                                               | Marks Weightage<br>(%)                             |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| SEM IV<br>DECEMBER-<br>JANUARY | Unit- I  Organometallic Reagents Principles, preparations, properties and applications of the following in organic synthesis with mechanistic details.  Transition Metal organic compounds Cu, Pd, Ni, Fe, Co, Rh, Cr and Ti Compounds. | Methods of preparations<br>and properties of<br>organometallic<br>compounds of transition<br>metal complexes | Diagrams, PPT,<br>Charts. | Analyse organometallic reagents of transition metals. | Knowledge Based - Define Synthon and Synthetic equivalent What do you understand by Regioselectivity?  Understanding Based -Explain principle of protection of carbonyl | Knowledge25<br>Understanding-45<br>Higher Order-30 |



|          | Protecting Groups Principle of Protection of alcohol, amine, carbonyl and carboxyl group.                                                                                        | Protection of specific organic compounds                                | Flow charts and tables    |                                        | compounds -How Nitro compounds can act as an acyl anion equivalent? How one can synthesis ketones from Nitro compounds?                        |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FEBRUARY | Unit-II  One Group C-C Disconnections Alcohols and carbonyl compounds, regioselectivity. Alkene Synthesis, use of acetylenes and aliphatic nitro compounds in organic synthesis. | Understanding Disconnection methods and reactions in organic synthesis. | Quiz, Diagrams,<br>Models | Elaborate<br>disconnection<br>approach | Higher Order Thinking Skills Based -Differentiate between stereoselectivity and stereospecificityDiscuss stereochemistry of Vitamin D and give |  |

| Two Group C-C Disconnections Diels-Alder reactions 1,3- difunctionalised compounds ansaturated carbonyl compounds, control in carbonyl condensations, 1,5- difunctionalized compounds. Micheal addition and Robinson annelation. |                                                                  | Charts, Flipped classrooms |                                                                                                    | its retrosynthesis also. |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------|--------------------------|-----|
| Unit-III Synthesis of Some Complex Molecules Application of disconnection approach in the synthesis of following compounds: Camphor, Longifoline, Cortisone, Reserpine, Vitamin D, Juvabione, Aphidicolin and Fredericamycin A.  | Applications of disconnection in synthesis of complex molecules. | PPT, Flow charts           | Implement the application of disconnection approach in the synthesis of complex organic compounds. |                          | Tay |



# SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) M.SC CHEMISTRY (FINAL) ELECTIVE (ORGANIC & INORGANIC) SEMESTER IV

#### ANALYTICAL CHEMISTRY- CHEM-404(A,B)

MAX MARKS: 100 (70EXT; 30 INT)

MIN. MARKS: 40 (28 EXT;12 INT)

| SEM/<br>Month                  | UNIT/TOPIC                                                                                                                                                                                                                                                                                                                                    | Concepts/facts               | Teaching<br>Pedagogy      | Learning<br>Outcomes                                                                                       | Questions                                                             | Marks Weightage<br>(%)                             |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|
| SEM IV<br>DECEMBER-<br>JANUARY | Unit-I Data analysis and statistics Types and sources of errors, Accuracy and precision, Significant figures; Mean ,Median and Standard Deviation, Rejection of results, Q- Test, Tests of significance, Comparison of the means of two samples, Analysis of Variance, Replicate determinations, Correlation, Regression, Uses of Statistics. | Concepts of data<br>analysis | Diagrams, PPT,<br>Charts. | Implement<br>statistical<br>methods of<br>analysis to<br>various problems<br>and extraction<br>techniques. | Knowledge Based - What is absolute error? - Define Gas Chromatography | Knowledge25<br>Understanding-45<br>Higher Order-30 |

|                    |                                      |               |                | T                                            |
|--------------------|--------------------------------------|---------------|----------------|----------------------------------------------|
|                    | Solvent Extraction                   | Techniques of | Demonstration, |                                              |
|                    | Partition: The theory of Extraction, | Solvent       | Tables         |                                              |
|                    | Mechanism of solvent extraction,     | extraction.   |                | , 1                                          |
|                    | Extraction involving ion association |               |                | 1                                            |
|                    | complexes, Synergistic extraction,   |               |                | ,                                            |
|                    | Solvent extraction by                |               |                |                                              |
|                    | macromolecules, Techniques for       | i             |                |                                              |
|                    | solvent extraction, Applications,    |               | A av           |                                              |
| I Plant            | Solid phase extraction (SPE), Solid  | 80-18         | Yenn'          | 03                                           |
| With               | phase micro extraction (SPME).       | 1 Jawy 1      |                |                                              |
| PRINCIPAL          |                                      |               |                | Head                                         |
| PHIA GIRLS' COLLE  | SE .                                 |               |                | Department of Chemistr                       |
| (AUTONOMOUS) AJMER |                                      |               |                | Sophia Girls' College<br>(Autonomous), Ajmer |