SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER # COURSE PLAN (PHYSICS) U.G Programs 2019-2020 ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc. I (SEMESTER I) # Mechanics (PAPER I) (PHY 101) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 #### **COURSE PLAN 2019-2020** | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|---|---|--|---|--| | JULY | Kinematics of moving fluids, Equation of continuity, Bernoulli's theorem and its applications – atomizer Torricelli's theorem and ventruimeter. Viscous fluids, Stream line and Turbulent flow, Poiseuille's law, Capillary tube flow Reynold's number, Stokes law, terminal velocity, Surface tension and surface energy, molecular interpretation of surface tension. Surface Energy, Excess pressure inside soap bubble, liquid drop and air bubble. | Viscosity. Bernoullie's theorem Bernoullie's theorem applications | Giving different
examples by
relating with
nature, white
board teaching,
students-teacher
discussion ,PPT
only for
Theoretical
concept | Calculation of Excess pressure and also meniscus of different liquids. Knowledge about the liquid flow | Knowledge Based -What is Viscosity? - Define Elastic collision. Understanding Based -Compare types of Flow of liquidDescribe law of Conservation of momentum. Higher Order Thinking Skills Based -Derive expression of | Knowledge60
Understanding-30
Higher Order-10 | | PRINCIPA
SOPHIA GIRLS' O
(AUTONOMO | OLLEGE | | | | | Head
epartment of Physics
Sophia Girls' College
Autonomous), Ajmer | |--|---|---|---|---|--|---| | March-April | Noise and Music: The human ear and its responses, limits of human audibility, intensity and loudness, bel and decibel, the musical scale, temperament and musical instruments. Plane electromagnetic waves in vacuum, Wave equation for E and B of linearly, circularly and elliptically polarised electromagnetic waves. | Wave equation
for E and B of
linearly, circularly
and elliptically
polarised. | Basic
conceptsby
examplesTheor
tical concept by
PPt, White board
teaching for
derivation,
Examples, group
disscussion | •Relate Noise
and Music, its
scale and
circularly
elliptically
polarized light | | Derfred | | | waves as normal modes of bounded systems Harmonics and quality of sound: examples. Production and detection of ultrasonic and infrasonic waves and applications | | | | | | | February | Waves in media: Speed of transverse waves on a uniform string, Speed of longitudinal waves in a fluid, Energy density and energy transmission in Waves, Typical measurement, Group velocity and phase velocity, their measurements, superposition of waves. Standing waves: Standing | Meaning of wave
and its equation
Production and
detection of
ultrasonic and
infrasonic waves and
applications | Class
test,assignement
s,project work,
class teaching
on board,ppt | •Explain
superposition
of waves and
their
application in
standing
waves. | - Explain properties
of standing waves
-Give detail of
Human ear. | | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc II (SEMESTER III) Thermodynamics and Statistical Physics (302) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|---|---|---|---|--| | JULY | Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics and its limitations. Second law of thermodynamics and its significance, Heat engine, Carnot's Heat engine and its efficiency. Joule | Basics knowledge of
thermodynamics and
working of Carnot's
Heat engine | White board
teaching for
derivation,PPT,
Examples,group
disscussion | Explain the laws of Thermodynam ics and thermodynami cal functions. | Knowledge Based -What is I law of thermodynamics - Define Heat engine. Understanding Based -Compare I & II law | Knowledge40
Understanding-40
Higher Order-20 | | | Thomson effect, Joule-Thomson
(Porous plug) experiment,
conclusions and explanation,
analytical treatment of Joule
Thomson effect | | Quiz,
PPT,Practicles | | of ThermodynamicsDescribe Helmholtz Functions. Higher Order Thinking Skills Based | | | | Entropy. Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy (H), Gibbs function (G) and the relations between them | | | | -Derive expression of
Joule -THomosons
effect
-Derive Maxwells
equations | | | AUGUST | derivation of Maxwell
thermodynamical relations from
thermodynamical functions. | Detail concept of
probability and its
relation with
entrophy | Diagrams,
Class
test,Examples,
Numericals | Compose
Probability
Problems and | | | | | Unit – II Microscopic and Macroscopic systems, events-mutually exclusive, dependent and independent. Probability, A- priori Probability | | | relation
between
probability and
entropy | | |---------------------------|---|---|--|---|-------------------------------------| | | Tossing any number of Coins, distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in two boxes of equal size, Micro and Macro states, | | | | | | SEPTEMB
ER- | Probability (Boltzmann's relation). Phase space, Division of Phase space into cells. | | | •Compare
different types
of statistics | | | | Unit – III Need for Quantum Statistics: three kinds of statistics, | Comparison of:
three kinds of
statistics, Planck's
radiations law. | | and their
applications. | | | OCTOBER
Novembe
r | basic approach in three
statistics Bose-Einstein energy
distribution law, Application of
B.E. statistics to Planck's radiation
law B.E. gas. Fermi – Dirac energy | | Theortical
concept by
PPt, White board
teaching for
derivation,
Examples, group | | | | PRINCIPAL PHIA GIRLS COLI | distribution law, F.D. gas and
Degeneracy, Fermi energy and
Fermi temperature. | | disseussion
,Class test | | Derfmel. Hoad Department of Physics | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc III (SEMESTER V) Quantum Mechanics (502) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|---|---|--|--|--| | JULY | UNIT-1 Origin of Quantum theory: Failure of classical Physics to explain the phenomenon such as black body spectrum, Planck's radiation law. Compton effect, De-Broglie hypothesis, | Outcome of
Quantum theory and
Uncertainty principle
and its consequences | White board
teaching for
derivation,PPT,
Examples,group
disscussion | •Understand
Fundamental
of Quantum
theory,
Heisenberg
Uncertainty | Knowledge Based -What is, De-Broglie hypothesisDefine a wave function. Understanding Based | Knowledge30
Understanding-50
Higher Order-20 | | | Uncertainty principle and its consequences gamma ray microscope, diffraction at a single slit. | | Quiz,
PPT,Practicles | principle and
its
applications. | -Write application of uncertainty principle -Compare time | | | | . Application of uncertainty principle- (i) Non existence of electron in nucleus (harmonic oscillator. Energy-time uncertainty. | | | | dependent and time
independent
Schrodinger
equations. | | | AUGUST | ii) Ground state energy of H-atom (iii) Ground state energy of harmonic oscillator. Energy-time uncertainty. UNIT-II Fundamental postulates of quantum mechanics, eigen function and | Schrodinger equation time dependent and time independent form and its physical significance. | Diagrams,
Class
test,Examples,
Numericals | -Describe
Wave
Function and
types of
Schrodinger
equation. | Higher Order Thinking Skills Based - For rectangular potential barrier, calculatef reflection and transmission coefficient Deduce Planck's | | | | | eigen value, degeneracy degeneracy orthogonality of eigen functions, commutation relations Schrodinger equation – time | | | | radiation law equation. | | |-----------------------------|-------------------------------|--|---|--|--|-------------------------|--| | | | dependent and time independent form Physical significance of the wave function and its interpretation, probability current density | | | Solve various | | | | | 2 | operators in quantum mechanics.Expectation values of dynamical variables, the position, momentum and energy. | | | problems related to the boundary condition based on Schrodinger equation | | | | | OCTOBER - Novembe r | UNIT-3 Simple Solutions of Schrodinger equation: Time independent Schrodinger equation and stationary state solution, Boundary and continuity conditions on the wave function, particle in one dimensional box, eigen function and eigen values, discrete energy | Application of schrodinger wave equation to solve different problems. | Theortical
concept by
PPt,White board
teaching for
derivation,
Examples,group
disscussion
,Class test | | | . 0 | | PRIN
OPHIA GIR
(AUTO) | CIPAL
LS' COLLEG
OMOUS) | levels extension of results for three dimensional case and degeneracy of levels. Potential step and rectangular potential barrier, calculation of reflection and transmission coefficient, Simple harmonic oscillator (one dimensional) eigen function, energy | | | | Soph | Head
ment of Physics
la Girls' College
nomous), Ajmer | #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) # B.Sc I (SEMESTER II) Waves and Oscillations (202) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | E PLANS EM I Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|--|---|---|--|---|--| | December-
January | Potential well and periodic oscillations, cases of harmonic oscillations, differential equations and its solutions, Kinetic and Potential energy, Simple harmonic oscillations in-Spring and mass system | What is simple
harmonic oscillator
and time period of
different oscillator | White board
teaching for
derivation,PPT,
Examples,group
disscussion | •Calculate
time period of
various
oscillators | Knowledge Based -WHAT IS S.H.M.? DefineLC circuit- What is Superposition principle? Understanding | Knowledge50
Understanding-40
Higher Order-10 | | | Simple and compound pendulum, Torsional pendulum, Bifilar oscillations, Helmholtz resonator, LC circuits, Vibration of magnet, Oscillation of two masses connected by a spring. | | Discussion, Tuto
rial
classes, Class
teaching | | Based -Calculate time period of Torsional pendulum -Compare standing and Transverse wave Higher Order Thinking Skills Based | | | February | Waves in media: Speed of transverse waves on a uniform string. Speed of longitudinal waves in a fluid. Energy density and energy transmission in Waves, Typical measurement. Group velocity and phase velocity, their measurements, superposition of waves. Standing waves as normal modes of bounded systems | Meaning of wave
and its equation
Production and
detection of
ultrasonic and
infrasonic waves and
applications | Class
test assignement
s.project work,
class teaching
on hoard.ppt | •Explain
superposition
of waves and
their
application in
standing
waves. | - Explain properties
of standing waves
-Give detail of
Human ear. | | |-----------------|---|---|---|---|--|--------| | | Harmonics and quality of sound:
examples. Production and detection
of ultrasonic and infrasonic waves
and applications | 16 | | | | | | March-
April | Noise and Music: The human ear and its responses, limits of human audibility, intensity and loudness, bel and decibel, the musical scale, temperament and musical instruments. Plane electromagnetic waves in vacuum, Wave equation for E and B of linearly, circularly and elliptically polarised electromagnetic waves. | Wave equation
for E and B of
linearly, circularly
and elliptically
polarised. | Basic
conceptsby
examplesTheor
tical concept by
PPt,White board
teaching for
derivation,
Examples,group
disscussion | •Relate Noise
and Music, its
scale and
circularly
elliptically
polarized light | | Deepma | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) # B.Sc II (SEMESTER IV) Optics (402) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|--|---|---|--|--|--| | December-
January | Interference of a light: The principle of superposition, two slit interference, coherence requirements of the sources. Newton's ring and its application to find wavelength of light and refractive index of medium. Haidinger fringes: Fringes of equal inclination. Michelson interferometer it's application for precision determination of wavelength, Wavelength difference and the width of spectral lines. | Fundamental
knowledge of
Iterforence, Newton
rings and
applications of
Michelson
interferometer | White board teaching for derivation, PPT, Examples, group disscussion Quiz, PPT, | Summarize Interference and its application in Michelson interferometer | Knowledge Based -Define Interference -What is Superposition principle? Understanding Based -Write application of Michelson interferometer -Compare uniaxial and biaxial crystals. Higher Order Thinking Skills Based - Explain Working ofMichelson | Knowledge30
Understanding-50
Higher Order-20 | | February | Polarization of light: Meaning of polarization, polarization by reflection: Brewster law, polarization by refraction through "Pile of plates", Laws ofMalus, Phenomenon of double refraction, uniaxial and biaxial crystals, Huygenstheory of double refraction, the ordinary and extra ordinary refractive indices. | What is the meaning polarisation and how it can be produced?. | Class
test,assignement
s,project work,
class teaching
on board,ppt | Explain Polarization phenomenon and Polaroids. | interferometer -
Illustrate diffraction
due to Nslits. | | |-----------------|--|---|---|--|--|--------| | | Production and Analysis of Polarized Light: production of plane polarizedlight, the Polaroid, Nicol prism, analyser and polarizer, double image prisms, quarter and half wave plates. | | | | | | | March-
April | Fresnel diffraction: Half periods zones, Fraunhofferdiffraction: Single slit, double slit, n slit, Intensity distribution, Plane diffraction grating, Dispersive power of a grating, Resolving power, Reyleigh criterion, resolving power; telescope grating, prism. | | Basic concepts
of diffraction by
pracical. Theorti
cal concept by
PPt, White board
teaching for
derivation,
Examples, group
disscussion | •Compare Fresnel and Fraunhoffer Diffraction and their application in grating. | | Deefne | SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) # B.Sc III (SEMESTER VI) ## Atomic and Molecular Spectroscopy (602) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|--|---|---|---|--| | December-
January | Lasers and Holography: Spontaneous and stimulated emission, density of states, Einstein's A and B coefficients, Ratio of stimulated to spontaneous transitions in a system in thermal | Fundamental
knowledge of
LASER and Types of
LASER and
Holography | Working of
laser through
energy level
diagram
White board
teaching for
derivation,PPT,
Examples,group
disscussion | Describe properties of LASER, types of LASER and Holography applications. | Knowledge Based -Define population InversionWhat is a rigid rotator? Understanding Based -Write application of Lasers | Knowledge30
Understanding-50
Higher Order-20 | | | , Energy density of radiation as a
result of stimulated emission and
absorption, Condition for
amplification, Population inversion,
Methods of optical pumping | | Quiz,
PFT,Praviveles | | -Compare
Spontaneous and
stimulated emission?
<u>Higher Order</u>
<u>Thinking Skills Based</u> | | | February | Energy level schemes of He-Ne and
Ruby lasers, working of a laser
source
Special features of a laser source
and their origin. Basic concepts of | Quantum features of one electronand spin- | Class | | - Explain Working of
Ruby laser :
-Illustrate Rotational
energy levels of
diatomic molecule | | | | holography, construction of a
hologram and reconstruction of the
image.
Unit – II
Elementary Spectroscopy:
Quantum features of one electron | orbit coupling. | test,assignement
s,project work,
class teaching
on board,ppt | •Explain
continous and
descrete enery
levels of one
electron atomp | | |-----------------|--|--|---|--|--| | | spectral lines of hydrogen atom, Frank-Hertz experiment and discrete energy states, Stern and Gerlach experiment, Spin and Magnetic moment, Spin Orbit coupling and qualitative explanation of fine structure. | | | | | | March-
April | Atoms in a magnetic field, Zeeman effect (normal and anomalous), Zeeman splitting. Unit – III Qualitative features of molecular spectroscopy, Rigid rotator, discussion of energy eigen values and eigen functions, Rotational energy levels of diatomic | Detail of Zeeman's splitting and rigid body rotator. | Theortical
concept by
PPt, White board
teaching for
derivation,
Examples, group
disscussion | •Summarise
Molecular
Spectra and
Raman effect | | (MITONOMOUS)