SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER # COURSE PLAN(PHYSICS) U.G Programs 2018-19 #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) 3. Sc. I (SEMESTER I) ELECTROMAGNETISM (PHY-102) Max. Marks: 75 (50 External: 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|--|--|--|---|--| | SEM I
JULY | UNIT I Scalars and Vectors: dot products, vector product, triple vector product, gradient of scalar field and its geometrical interpretation, divergence and curl of a vector field. Flux of vector field Gauss's divergence theorem, Stokes theorem. Gauss's Law and its integral and differential form. Coulomb's law in vacuum expressed in vector form. | Scalar and vector fields Theorems related to scalar and vector fields | Lecture method, problem solving method, quiz Lecture method, problem solving method | Tabulate
vector
properties and
theorems
related to it. | Knowledge Based -What is scalar field? -State the Stokes theorem. Understanding Based -Illustrate the electromagnetic | Knowledge60
Understanding-30
Higher Order-10 | | AUGUST | UNIT III Concept of magnetic field B and magnetic flux, Biot-Savart's law, B due to a straight current carrying | Magnetic flux
and intensity of
magnetic field | Group
Discussion,
Lecture method | | induction. -show that $\operatorname{div} \ \widehat{R} = \frac{2}{R}, \text{ where}$ $\overrightarrow{R} = \widehat{t}x + \widehat{j}y + \widehat{k}z.$ | | | SEPTEMBER | conductor.Ampere circuital law (integral and differential form), Force on a current carrying wire and torque on a current loop in a magnetic field, Maxwell's equations (integral and differential form) and displacement current Electromagnetic induction, Faraday law (its integral and differential form) Lenz's law, mutual & self inductance, Charging, discharging of condenser through resistance, rise and decay of current in LR circuit, decay constant, transient in LCR circuit | Electromagnetic
Induction | Demonstration
through
examples | Explain
Magnetic field
and analysis of
AC circuits | Higher Order Thinking Skills Based - Estimate equations for the growth and decay of current in LR circuit. - Express the Maxwell's equation in their differential | | |--|--|--|--|--|---|---| | OCTOBER | UNIT II Electric field in matter: atomic and molecular dipoles, permanent dipole moment. Capacity of parallel plate capacitor with partially or completely filled dielectric, electric displacement, Lorentz local field and Clausius Mossotti equation. | Electrostatic
properties of
conducts | Lecture
Method, PPT,
quiz, numerical
solving method | Classify Electrostatic properties of conducts and various boundary conditions. | and integral forms
and discuss them | | | RINCIPAL
GIRLS' COLLEGE
ITCINOMOUS)
AIMER | Electrostatic field – conductors in electric field, Boundary conditions for potential and field at dielectric surface, Poisson's and Laplace's equations in Cartesian cylindrical and spherical polar coordinates (without derivation). | Various boundary conditions. | Lecture Method,
PPT, quiz,
numerical
solving method | | S | Head partment of Physics cphia Girls' College utonomous), Ajmes | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc II (SEMESTER III) Thermodynamics and Statistical Physics (302) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|---|---|---|---|--| | JULY | Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics and its limitations. Second law of thermodynamics and its significance, Heat engine, Carnot's Heat engine and its efficiency. | Fundamental
knowledge of
thermodynamics and
Carnot's Heat engine | Group
discussion
White board
teaching for
derivation, PPT,
Examples, | laws of
Thermodynam
ics and
thermodynami
cal functions. | Knowledge Based -What is II law of thermodynamics - Define Carnot's Heat engine. Understanding Based | Knowledge40
Understanding-40
Higher Order-20 | | | Joule Thomson effect Thomson
effect, Joule-Thomson (Porous
plug) experiment, conclusions and
explanation, analytical treatment of
Joule Thomson effect | | Quiz,
PPT,Practicles | | -Compare laws of
Thermodynamics.
-Describe Gibbs
Functions. | | | | Entropy. Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy (H), Gibbs function (G) | | | | Higher Order Thinking Skills Based -Explain Joule – THomosons effect | | | AUGUST | Derivation of Maxwell thermodynamical relations from | Detail concept of probability and its | Diagrams,
Class | Compose | -Derive Maxwells equations | | | YS SEEDEN | | | | | | | |-----------|--|--|---|---|--|--| | | | thermodynamical functions. Unit – II Microscopic and Macroscopic systems, events-mutually exclusive. dependent and independent. Probability, A- priori Probability Tossing any number of Coins, distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in two boxes of equal size, Micro and Macro states, | relation with
entrophy | test,Examples.
Numericals | Probablity Problems and relation between probability and entropy | | | | SEPTEMB
ER- | Probability (Boltzmann's relation). Phase space, Division of Phase space into cells. Unit – III Need for Quantum Statistics: three kinds of statistics, | | | •Contrast and compare different types of statistics | | | | | basic approach in three statistics
basic approach in three statistics | Comparison of:
three kinds of
statistics, Planck's
radiations law. | e | and their applications. | | | RINC | Novembe
r
IPAL
S' COLLEGE
PMOUS) | .Bose-Einstein energy distribution law, Application of B.E. statistics to Planck's radiation law B.E. gas. Fermi – Dirac energy distribution law, F.D. gas and Degeneracy, Fermi energy and Fermi temperature. | | Open book test Theortical concept by PPt, White board teaching for derivation, Examples, group disscussion , Class test | | Head Department of Physics Sophia Girla' College (Autonomous), Ajmer | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc III (SEMESTER V) Quantum Mechanics (502) Max. Marks: 75 (50Ext: 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|--|--|--|---|---|--| | JULY | UNIT-1 Origin of Quantum theory: Failure of classical Physics to explain the phenomenon such as black body spectrum, Planck's radiation law. Compton effect . De-Broglie Hypothesis, Uncertainty principle and its consequences gamma ray microscope, diffraction at a single slit Application of uncertainty principle- (i) Non existence of electron in nucleus (harmonic oscillator. Energy-time uncertainty. | Outcome of . De-
Broglie Hypothesis
,Quantum theory and
Uncertainty principle
and its consequences | White board
teaching for
derivation,PPT,
Examples,group
disscussion
Quiz,
PPT,Practicles | •Understand Fundamental of Quantum theory, Heisenberg Uncertainty principle and its applications. | Knowledge Based -What is a Wave? -Define a wave function. Understanding Based -Write application Debrogli Hypothesis Give difference between time dependent and time independent Schrodinger equations. | Knowledge30
Understanding-50
Higher Order-20 | | AUGUST | ii) Ground state energy of H-atom
(iii) Ground state energy of
harmonic oscillator. Energy-time
uncertainty. | | Diagrams,
Class
test,Examples,
Numericals | -Describe
Wave
Function and
types of
Schrodinger
equation. | Higher Order Thinking Skills Based - For Potential step calculatef reflection and transmission coefficient Deduce Planck's radiation law | | | | | UNIT-11 Fundamental postulates of quantum mechanics, eigen function and | Schrodinger equation – time dependent and time independent form and its physical significance. | | | equation. | | |-------|----------------|--|--|--|---|-----------|---| | | | eigen value, degeneracy degeneracy
orthogonality of eigen functions,
commutation relations | | | | | | | | | Schrodinger equation – time
dependent and time independent
form | | | | | | | | SEPTEMB
ER- | Physical significance of the wave function and its interpretation, probability current density | | | Solve various
problems
related to the
boundary | | | | | | operators in quantum
mechanics.Expectation values of
dynamical variables, the position,
momentum and energy. | | | condition
based on
Schrodinger
equation | | | | PRINC | S' COLLEGE | UNIT-3 Simple Solutions of Schrodinger equation: Time independent Schrodinger equation and stationary state solution, Boundary and continuity conditions on the wave function, particle in one dimensional box, eigen function and eigen values, discrete energy levels extension of results for three | Application of
schrodinger wave
equation to solve
different problems. | Theortical
concept by
PPt, White board
teaching for
derivation,
Examples, group
disscussion
,Class test | | So | Head
artment of Physics
phia Girls' College
conomous), Ajmer | | | | dimensional case and degeneracy of levels. Potential | | | | | , | | | | rectangular potential barrier,
calculation of reflection and
transmission coefficient, Simple
harmonic oscillator (one
dimensional) eigen function, energy
eigen values, zero point energy. | | | | | | ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B. Sc. I (SEMESTER II) #### Kinetic Theory of Gases and Theory of Relativity (PHY-201) Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM II
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------|--|---|--|---|---|---| | SEM II
DECEMBER | UNIT I Applications of special theory of relativity: Special theory of relativity, Lorentz co-ordinate and physical significance of Lorentz invariance, Length Contraction, Time Dilation, Velocity addition theorem, Variation of mass with velocity. | Theory of
Relativity and its
applications | Blackboard
teaching,Lecture
method,
problem solving
method, quiz | Describe
Einstein's
theory of
Relativity and
Lorentz
transformation
equations | -What is the time
Dilation?
-what is the RMS
speed? | Knowledge—60
Understanding-30
Higher Order-10 | | JANUARY | Mass energy equivalence,
Transformation of relativistic
momentum and energy, relation
between relativistic momentum and
energy, Mass, velocity, momentum
and energy of zero rest mass | | Lecture method,
problem solving
method | | Understanding Based -Calculate the speed | | | | UNIT II
Inertial frames, Galilean | Different types of
Frames of | | | component where
probability reduces
half of its maximum | | | | | transformation, Non-Inertial frames. fictious forces, Displacement. velocity and acceleration in rotating co-ordinate system, Coriolis force and its application, Effect of Coriolis force on a particle moving Horizontally on Earth | References | Group
Discussion,
Lecture method | Explain frame of references. | value. -Derive the variation of mean free path of molecules of gas with pressure and temperature. | | |------|---|---|--|--|---|--|---| | | FEBRUARY | Effect of Coriolis force on Bodies falling Vertically downward on Earth, Effect of Coriolis force on Bodies thrown Vertically upward on Earth Effect of Coriolis force on Pendulum or Foucault Pendulum. | Coriolis force | Demonstration
through
examples | and their
effects | Higher Order Thinking Skills Based - Estimate the formula for displacement, | | | | | UNIT III Assumptions of Kinetic Theory of gases, Law of equipartition of energy and its applications for specific heats of gases | To calculate
different types of
velocity | Lecture
Method, PPT,
quiz, numerical
solving method | Illustrate Properties of gases and different types of velocities. | velocity and
acceleration in
rotating coordinate
system. | | | (AUT | MARCH PLON NCIPAL RLS' COLLEGE ONOMOUS) AMER | Maxwell distribution of speeds and velocities (derivation required), Experimental verification of Maxwell's Law of speed distribution: most probable speed, average and r.m.s. speed, mean free path. | | Lecture Method,
PPT, quiz,
numerical
solving method | | | Head Denartment of Physics Sophia Girla College (Autonomous), Ajmer | #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) #### B.Sc II (SEMESTER IV) Optics (402) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|--|--|---|---|--|--| | December-
January | Unit-1 Interference of a light: The principle of superposition, two slit interference, coherence requirements of the sources.Newton's ring and its application to find wavelength of light and refractive index of medium . Haidinger fringes: Fringes of equal inclination.Michelson interferometer it's application for precision determination of wavelength, Wavelength difference and the width of spectral lines. Unit-2 | Knowledge of
Interference,Newton
rings and Michelson
interferometer | White board
teaching for
derivation,PPT,
Examples,group
disscussion | Summarize
Interference
and its
application in
Michelson
interferometer | Knowledge Based -Define Coherent sources -What is the principle of Interference? Understanding Based -Write application of Newton Rings -Compare uniaxial and biaxial crystals. Higher Order Thinking Skills Based - Explain Working ofMichelson | Knowledge30
Understanding-50
Higher Order-20 | | enstheory of double
stion, the ordinary and extra
ary refractive | | | | | | |--|--|--|---|---|---| | es.Production and Analysis of
ized Light: production of
polarizedlight, the Polaroid,. | | | | | | | prism, analyser and polarizer, e image prisms, quarter and ave plates Fresnel diffraction: Half s Fraunhofferdiffraction: slit, double slit, n slit, ity distribution, Plane tion grating, Dispersive of a grating, Resolving Reyleigh criterion, resolving: telescope, grating, prism. | | Basic concepts of diffraction by pracical.Theorti cal concept by PPt, White board teaching for derivation, Examples, group disscussion | •Compare Fresnel and Fraunhoffer Diffraction and their application in grating. | [emarki | Head
ment of Physics | | 1 | y distribution, Plane
ion grating, Dispersive
of a grating, Resolving
Reyleigh criterion, resolving | y distribution, Plane ion grating, Dispersive of a grating, Resolving Reyleigh criterion, resolving | y distribution, Plane ion grating, Dispersive of a grating, Resolving Reyleigh criterion, resolving | y distribution, Plane ion grating, Dispersive of a grating, Resolving Reyleigh criterion, resolving | by distribution, Plane ion grating, Dispersive of a grating, Resolving Reyleigh criterion, resolving telescope, grating, prism. | ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) ## B.Sc III (SEMESTER VI) #### Atomic and Molecular Spectroscopy (602) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|--|---|--|---|--| | December-
January | Lasers and Holography: Spontaneous and stimulated emission, density of states, Einstein's A and B coefficients, Ratio of stimulated to spontaneous transitions in a system in thermal equilibrium | Fundamental
knowledge of
LASER and Types of
LASER and
Holography | Working of
laser through
energy level
diagram
White board
teaching for
derivation,PPT,
Examples,group
disscussion | Describe
properties of
LASER, types
of LASER and
Holography
applications. | Knowledge Based -Define LASER -What is a Holography? Understanding Based -Write application of Lasers -Derive Cofficient of | Knowledge30
Understanding-50
Higher Order-20 | | | , Energy density of radiation as a result of stimulated emission and absorption, Condition for | | Quiz,
PPT,Practicles | | Spontaneous and stimulated emission?
Higher Order | | | | | amplification, Population inversion,
Methods of optical pumping
Energy level schemes of He-Ne and
Ruby lasers, working of a laser
source | | | | - Explain Working of
He-Ne LASER.
-Illustrate Rotational
energy levels of | | |-----|-------------------------------|---|--|---|--|--|--| | | February | Special features of a laser source
and their origin. Basic concepts of
holography, construction of a
hologram and reconstruction of the
image.
Unit – II
Elementary Spectroscopy:
Quantum features of one electron | Quantum features of one electronand spin-orbit coupling. | Class
test,assignement
s,project work,
class teaching
on board,ppt | •Explain
continous and
descrete enery
levels of one
electron atomp | diatomic molecule | | | | | spectral lines of hydrogen atom, Frank-Hertz experiment and discrete energy states, Stern and Gerlach experiment, Spin and Magnetic moment, Spin Orbit coupling and qualitative explanation of fine structure. | | | | | | | Sul | March-April | Atoms in a magnetic field, Zeeman effect (normal and anomalous), Zeeman splitting. Unit – III Qualitative features of molecular spectroscopy, Rigid rotator, discussion of energy eigen values and eigen functions, Rotational | Detail of Zeeman's splitting and rigid body rotator. | Theortical concept by PPt, White board teaching for derivation, Examples, group disscussion | •Summarise
Molecular
Spectra and
Raman effect | | Head Department of Physics Sophia Girls' College | | | CIPAL
S' COLLEGI
OMOUS) | energy levels of diatomic | PRIN | ICIPAL
LS' COLLEGE | | | (Autonomous), Ajmer |