SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER # COURSE PLAN U.G. & P.G. Programs 2021-22 ODD SEMESTER # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER B. Sc. I (SEMESTER I) # INORGANIC CHEMISTRY (CHE-101) Max. Marks: 75 (50 Ext; 25 Int) Min. Marks: 30(20 Ext; 10 Int) Credit: 03 #### **COURSE PLAN** | SEM /
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage
(%) | |--------------------------------|---|--|--|---|--|--| | SEM II
September
October | UNIT I Atomic Structure Idea of de-Broglie matter waves, Heisenberg uncertainty principle, atomic orbitals, Schrodinger wave equation, significance of ϕ and ϕ^2 , quantum numbers, shapes of s, p, d orbitals. Electronic configurations of the atoms | Principles related to atomic structure | PPT, Chart,
Visual 3- D
Models | Interpret
atomic
structure and
Periodic
Properties. | Knowledge Based -Define ionic radiiWhat is de-Broglie equation. Understanding Based - Give the significance of φ and φ ² - Draw shapes of s, p, d orbitals | Knowledge60
Understanding-30
Higher Order-10 | | | Periodic Properties Atomic and ionic radii, ionization enthalpy, electron gain enthalpy and electronegativity. | Periodic trends of
various properties | Quiz,
Visual 3- D
Models,
Demonstration,
Problem Solving | | d orbitals. Higher Order Thinking Skills Based -Discuss Heisenberg uncertainty principleExplain electronegativity and its periodic variation. | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Department of Chemistry Sephia Girls' College (Autonomous), Ajmer #### SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (PREVIOUS) SEMESTER I ## **INORGANIC CHEMISTRY (CHEM-101)** Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40(28 Ext; 12 Int) Credit: 06 | SEM/
Month | Unit/Topic | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-------------------|---|---|--|---|--|---| | SEM I
November | Unit - I VSEPR, Walsh diagrams of tri atomic molecules, dπ-pπ bonds, bonds, Bent's rule, simple reactions of covalently bonded molecules | Stereochemistry and
bonding in main
group compounds | PPT, 3-D
Models ,
Audio Visual
Tutorials | Predict
stereochemistry and
bonding in main
group compounds | Knowledge Based -What is VSEPR theory? -Define archaenoboranes Understanding Based | Knowledge-25
Understanding-45
Higher Order-30 | | | Higher boranes, carboranes, metalloboranes and metallocarboranes | Metals Clusters | PPT, Diagrams | | -Compare the properties of boranes and carboranes. | | | December | Unit - II Energy profile of reaction, reactivity of metal complexes, inert and labile, kinetic applications of | | PPT, Online
Quiz , Problem
Solving
Activities | Assess the chemical
behaviour of
transition metal
complexes. | - Classify Labile and
Inert Complexes.
<u>Higher Order</u>
<u>Thinking Skills</u> | | | | | 4 | ٧. | | |---|---------------|---|-----|---| | | | | | | | | -7714 | | | | | = | | 4 | | - | | 6 | | 8 | - | _ | | • | No. of London | | | _ | | | - | - | 1 | | | | | | - 1 | | | | valence bond and crystal
field theories, kinetics of
octahedral substitution, acid
hydrolysis, base hydrolysis,
conjugate base mechanism | | | Based - Explain dπ-pπ bonding Elaborate SN ¹ CB mechanism. | | |---------------------|--|--|---|---|--| | January
February | UNIT - III Anation reaction, reactions without metal ligand bond cleavage. Substitution reactions in square planar complexes, the trans effect, mechanism of the substitution reaction, Redox reaction, electron transfer reactions, outer & inner sphere type reactions, cross reactions and Marcus-Hush theory. | Assignments,
3-D Models,
Online Quiz | Summarize the reaction mechanism of transition metal complexes. | | | PRINCIPAL PHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Head Department of Chemistry Sophia Girls' College (Autonomous), Ajmer Taru # B.Sc. III (SEMESTER V) # INORGANIC CHEMISTRY (PAPER I) (CHE-501) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEMV
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-------------------------------|---|--|--|---|---|--| | sem v
September
October | UNIT I Metal-ligand Bonding in Transition Metal Complexes An elementary idea of crystal- field theory, crystal field splitting in octahedral, tetrahedral and square planar complexes, factors affecting the crystal-field parameters. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields, Comparison of CFSE for octahedral and tetrahedral complexes. | Metal-ligand Bonding in Transition Metal Complexes | PPT, Flow
charts, Audio –
Visual Tutorials | Summarize Metal ligand bonding and various thermodynamic and kinetic aspects of transition metal complexes. | Based - Define Thermodynamic Stability - List any two roles of Ca in Body? Understanding Based - Compare paramagnetic and diamagnetic substances Give relationship | Knowledge40
Understanding-40
Higher Order-20 | | | Thermodynamic and Kinetic Aspect of Metal Complexes A brief outline of thermodynamic stability of metal complexes and factors | complexes, Trans effect | Group
discussions,
Flow Chart | | between stepwise
and overall
formation | | | SIPLE TO THE PROPERTY OF THE PARTY PA | | | | | -11 | | |--|---|----------------------------|--|---|---|--| | November | affecting the stability, Substitution reactions in square planar Trans effect, Trans effect series, theories of Trans effect, mechanism of substitution reactions, Factors affecting the rate of substitution reactions in square planar complexes. UNIT II Magnetic Properties of Transition Metal Complexes Types of magnetic behaviour, methods of determining magnetic susceptibility, spinonly formula. L-S coupling, correlation of μ_s and μ_{eff} values, orbital contribution to magnetic moments, application of magnetic moment data for 3d-metal complexes. | | Flipped
Classrooms,
Quiz, Problem
Solving | Explain
magnetic
properties and
electronic
spectra of
transition metal
complexes. | Higher Order Thinking Skills Based - Predict Structure and bonding in (NPCl ₂) ₃ - Explain the Pearson's HSAB Concept. | | | | Electronic Spectra of Transition Metal Complexes Types of electronic transition, selection rules of d-d transitions, spectroscopic ground state, spectrochemical series. Orgel-energy leve diagram for d¹and d9 states | Transition Metal Complexes | Diagrams, Charts | | | | # COURSE_PLAN_2021-22_DR_TARUNA _SETHI | | discussion of the electronic spectrum of $[Ti(H_2O)_6]^{3^+}$ complex ion. | | | | | |----------|--|---|---|---|--| | December | Basics of Bioinorganic
Chemistry
Essential and trace elements in | Role of metal ions in
Biological Processes | PPT, Quiz,
Assignments | Predict hard and soft acid base character of various compounds. | | | | Hard and Soft Acids and Bases(HSAB) Classification of acids and bases as hard and soft. Pearson's HSAB concept, acid base strength and hardness and softness. Symbiosis, theoretical basis of hardness and softness, electronegativity and hardness and softness, applications of HSAB concept. | | Charts, Group
discussions,
Flipped
Classroom | | | | | Silicones and Phosphazenes | Preparation and properties of Silicones | Quiz, Diagrams | | | # B.Sc. III (SEMESTER V) # PRACTICALS (CHE-503) Max. Marks: 50(40Ext; 10 Int) Min Marks: 20(16 Ext; 4 Int) Credit: 02 | SEM
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------|--|--|--|--|--|--| | SEM V | (A) Instrumentation Colorimetry-Job's method and Mole-ratio method Adulteration- Food stuffs. Effluent analysis, water analysis. Solvent Extraction: Separation and estimation of Mg(II) and Fe(II) Ion Exchange Method: Separation and estimation of Mg(II) and Zn(II) | Use of various instruments like colorimeter. | Demonstration
by using
different
Apparatus and
instruments | Understand
the practical
applications of
various
aspects of
chemistry | Knowledge Based Practical File Work Understanding Based To detect the components of the organic mixture Higher Order Thinking Skills Based Viva Voce | Knowledge30
Understanding-50
Higher Order-20 | | Н | N. L. | 4 | * | 1 | |-----|---------|----|---|---| | ш | | Ē, | | • | | id. | | | 4 | L | | 7 | × | ~ | 6 | 6 | | • | Mark W. | | 3 | - | | | | | | | | November | Synthesis Sodium trioxalato ferrate (III), Na ₃ [Fe(C ₂ O ₄) ₃] Ni-DMG complex, [Ni(DMG) ₂] Copper tetrammine complex [Cu(NH ₃) ₄]SO ₄ . cis-and trans-bisoxalato diaqua chromate (III) ion. | Methods of Synthesis of various inorganic compounds | Demonstration
of the exercise,
Laboratory
Experiments | |---------------------|---|--|--| | December
Tanvary | Organic Qualitative Analysis Analysis of an organic mixture containing two solid components using water, NaHCO ₃ , NaOH for separation and preparation of Suitable Derivatives | Detection of organic
compounds in binary
mixture | Demonstration
of the exercises,
Flow Chart,
Laboratory
Experiments | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTOMOMOUS) ALJMER Head Department of Chemistry Sophia Girls' Cellege (Autonomous), Ajmer # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (PREVIOUS) SEMESTER I # **INORGANIC CHEMISTRY (CHEM-101)** Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40(28 Ext; 12 Int) Credit: 06 | SEM/
Month | Unit/Topic | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-------------------|---|---|--|--|--|---| | SEM I
November | Unit - I VSEPR, Walsh diagrams of tri atomic molecules, dπ-pπ bonds, bonds, Bent's rule, simple reactions of covalently bonded molecules | Stereochemistry and
bonding in main
group compounds | PPT, 3-D
Models ,
Audio Visual
Tutorials | Predict
stereochemistry and
bonding in main
group compounds | Knowledge Based -What is VSEPR theory? -Define archaenoboranes Understanding Based | Knowledge-25
Understanding-45
Higher Order-30 | | | Higher boranes, carboranes,
metalloboranes and
metallocarboranes | Metals Clusters | PPT, Diagrams | | -Compare the properties of boranes and carboranes. | | | December | Unit - II Energy profile of reaction, reactivity of metal complexes, inert and labile, kinetic applications of | | PPT, Online
Quiz , Problem
Solving
Activities | Assess the chemical behaviour of transition metal complexes. | - Classify Labile and
Inert Complexes.
<u>Higher Order</u>
<u>Thinking Skills</u> | | | | valence bond and crystal
field theories, kinetics of
octahedral substitution, acid
hydrolysis, base hydrolysis,
conjugate base mechanism | | | Based - Explain dπ-pπ bonding Elaborate SN ^I CB mechanism. | | |---------|--|--|---|---|--| | January | UNIT - III Anation reaction, reactions without metal ligand bond cleavage. Substitution reactions in square planar complexes, the trans effect, mechanism of the substitution reaction, Redox reaction, electron transfer reactions, outer & inner sphere type reactions, cross reactions and Marcus-Hush theory. | Assignments,
3-D Models,
Online Quiz | Summarize the reaction mechanism of transition metal complexes. | | | Sr. Pearl PRINCIPAL PHIA GIRLS' COLLEGE AUTONOMOUS) AJMER Head Department of Chemistry Sophia Girls' College (Autonomous), Ajmer # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (FINAL) SEMESTER III # GREEN AND ENVIRONMENTAL CHEMISTRY (CHEM-303) Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40(28 Ext; 12 Int) Credit: 06 #### **COURSE PLAN** | SEM/
Month | UNIT/TOPIC | Concepts/
facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------------------|---|--------------------|---|---|---|---| | SEM III
October
November | Unit-III Sampling procedures and monitoring of water pollutants, determination of T.D.S. conductivity, acidity, alkalinity, hardness, chloride, FRC, sulphate, fluoride, phosphate, phenols, pesticides analysis, determination of DO, BOD, COD Water quality parameters, standards and laws. Effect on imposed lockdown due to COVID-19 on Water Quality of Rajasthan | | PPT, Models,
Presentation
by Students | Analyse the various aspects of pollution. | Knowledge Based -What is DO? Understanding Based -Distinguish between Chemical Oxygen Demand and Biological Oxygen Demand. Higher Order Thinking Skills Based - Discuss the Water quality parameters. | Knowledge-25
Understanding-45
Higher Order-30 | Tari Head Department of Chemistry Sophia Girls' College (Autonomous), Ajmer # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (PREVIOUS) SEMESTER I Practicals (CHEM-105) Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40(28 Ext; 12 Int) Credit: 06 #### **COURSE PLAN** | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |---------------|--|---|-------------------------------|--|---|--| | November | INORGANIC PREPARATIONS Cis —Potassium Diaquatrioxalatochromate(III) Tris(acetylacetonato)mangane se(II). Potassium Trioxalatoferrate(III). Purssian Blue. Hexamminecobalt(III) Hexamiro-N-cobaltate(III). Hexamminenickle(II) chloride. Bis(dimethylglyoximato)nicke 1 (II). Tetramminecopper(II) sulphate. | Methods of
Synthesis of
various
inorganic
compounds | Demonstration of the exercise | Understan
d the
practical
application
s of
various
aspects of
chemistry | Knowledge Based - Practical File Work Understanding Based -To prepare Tetramminecopper(II) sulphate. Higher Order Thinking Skills Based - Viva Voce | Knowledge20
Understanding-
40
Higher Order-40 | Tary Head Department of Chemistry Sophia Girls' Collegy (Augrena 1, A) COURSE_PLAN_2021-22_DR_TARUNA_SETHI # COURSE PLAN U.G. & P.G. Programs EVEN SEMESTER 2021-22 ## SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER B.Sc. III (SEMESTER VI) #### PHYSICAL CHEMISTRY (CHE-601) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30 (20 Ext; 10 Int) Credit: 03 | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------|--|----------------|---------------------------|---|--|--| | SEM VI
February | UNIT III Chemical Kinetics and Catalysis Chemical kinetics and its scope, rate of reaction, factors influencing the rate of a reaction. Determination of the order of reaction, Radioactive decay as a first order phenomenon. Experimental methods of chemical kinetics, Theories of chemical kinetics- effect of temperature on rate | | PPT, Quiz,
Assignments | Assess the kinetics of various chemical reactions | Knowledge Based - Define Black Body Radiation Write Franck Condon principle. Understanding Based - Derive Schrodinger | Knowledge40
Understanding-40
Higher Order-20 | | | Mile. | - | | |---|-------|----|-----| | | | 2 | • | | | 1710 | | | | | | J. | | | | | | 2 | | - | - | 1 | 000 | | | | | | | | of reaction, Arrhenius equation, concept of activation energy. Simple collision theory, Expression for the rate constant based on equilibrium constant and thermodynamic aspects. Complex reaction kinetics, parallel reaction, reversible reaction and conjugative reactions Catalysis, Characteristics, classification, miscellaneous examples, Kinetics of enzyme catalyzed reactions | | | Wave Equation Differentiate Stoke and Anti-stoke lines. Higher Order Thinking Skills Based - Describe Jablonski Diagram Explain kinetics of | | |-------|---|---|---|--|--| | March | WINT I Elementary Quantum Mechanics Black-body radiation, Planck's radiation law, photoelectric effect, Bohr's model of hydrogen atom (no derivation) and its defects, Compton effect. de Broglie hypothesis, Heisenberg's uncertainty principle, Sinusoidal wave equation, Hamiltonian operator, | Audio Visual
Tutorials, Flow
charts, Problem
Solving
Activity | Explain
Quantum
mechanics and
Photochemistry | Enzyme
Catalysis. | | | | | Schrodinger wave equation and its importance, physical interpretation of the wave function, postulates of quantum mechanics, particle in a one dimensional box. | ** | ŝe | | | | |----|----------|--|---|--|---|----|--| | | | Photochemistry Interaction of radiation with matter, difference between thermal and photochemical processes. Laws of Photochemistry: Grothus - Drapper law, Stark-Einstein law, Jablonski diagram Quantum efficiency and reasons for high and low quantum yields, photosensitized reactions-energy transfer processes. | Qualitative
description of
Photochemistry and
Photosensitized
reactions | Group
discussions,
PPT | | | | | Aj | pril-May | UNIT II Spectroscopy Spectroscopy and its importance in Chemistry, difference between atomic and molecular spectroscopy, Absorption and emission spectroscopy, electromagnetic radiation, regions of the spectrum, basic features of | Various spectroscopic techniques | Flipped
classrooms,
Quiz, Problem
Solving
Activity | Summarize the principles of various spectroscopic techniques. | v. | | | | different spectrometers,
statement of the Born-
Oppenheimer approximation,
degrees of freedom. | | | | | |---|--|---|----------------------------|----|----| | | Rotational Spectrum Diatomic molecules, Energy levels of a rigid rotor (semi- classical principles), selection rules, spectral intensity, Maxwell-Boltzmann distribution, determination of bond length, qualitative description of non-rigid rotor, isotope effect. | Qualitative
description of
rotational
spectroscopy | Quiz, group
discussions | | | | * | Vibrational Spectrum Infrared spectrum: Energy levels of simple harmonic oscillator, selection rules, pure vibrational spectrum, intensity, determination of force constant and qualitative relation of force constant and bond energies, effect of anharmonic motion and isotope on the spectrum, idea of vibrational frequencies of different functional groups. | Infrared and Raman spectrum | Quiz, group
discussions | e) | ** | | | Raman Spectrum concept of polarizability, pure rotational | | | | | # COURSE_PLAN_2021-22_DR_TARUNA _SETHI # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER B.Sc. III (SEMESTER VI) #### PRACTICALS (CHE-603) Max. Marks: 50(40Ext; 10 Int) Min. Marks: 20(16 Ext; 4Int) Credit: 02 | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |---------------|---|---|--|---|--|--| | SEM VI
Feb | A) Laboratory Techniques Column Chromatography (i) Separation of fluorescene and methylene blue (ii) Separation of leaf pigments from spinach leaves (iii) Resolution of racemic mixture of (±) mandelic acid | Principle, phenomenon and applications of Column Chromatography | Demonstration by using different Apparatus and instruments | Understand
the practical
applications
of various
aspects of
chemistry. | Knowledge Based Practical File Work Understanding Based To synthesize various organic compounds. Higher Order Thinking Skills Based Viva Voce | Knowledge30
Understanding-50
Higher Order-20 | | March | (B) Synthesis of organic compounds (i) m-dinitrobenzene (ii) p-nitroacetanilide (iii) Methyl orange | Methods of
Synthesis of various
organic compounds | Demonstration
of the exercise,
Laboratory
Experiments | | | | | | (iv) Methyl red (v) p-bromoacetanilide (vi) 2,4,6- tribromophenol | | Description | - | | |-------------|--|--------------------------------------|--|---|-------| | April-May (| (c) PHYSICAL CHEMISTRY (i) To determine the strength of the given acid conductometrically using standard alkali solution. | Verification of Beer-
Lambert Law | Demonstration
by using
different
Apparatus and
instruments | | , | | | (ii) To verify Beer-Lambert
law for KMnO ₄ /K ₂ Cr ₂ O ₇
and determine the
concentration of the given
solution of the substance. | | | | | | | (iii) To determine the solubility and solubility product of a sparingly soluble electrolyte conductometrically. | | | | | | | (iv)To study the saponification of ethyl acetate conductometrically. | | | | | | Sr. Pearl | (V)To determine the ionisation constant of a weak acid conductometrically. | | | | Tary_ | # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (PREVIOUS) SEMESTER II ## **COORDINATION CHEMISTRY (CHEM-201)** Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40(28 Ext; 12 Int) Credit: 06 | SEM/ | Unit/Topic | Concepts/facts | Teaching | Learning | Questions | Marks Weightage | |-----------------|--|--|--------------------------------|--|--|---| | Month | | | Pedagogy | Outcomes | | (%) | | SEM II
April | Unit – I Metal-Ligand Equilibria in Solution Stepwise and overall formation constants and their interaction, trends in stepwise constants, factors affecting the stability of metal complexes with reference to the nature of metal ion and ligand, chelate effect and its thermodynamic origin, determination of binary formation constants by pH-metry and spectrophotometry. | Factors affecting
the stability of
metal complexes,
nature of metal
ion and ligand | Demostration, Diagrams, Chart. | Analyse the aspects of metal-ligand equilibria in solution and metal-ligand bonding. | Knowledge Based - Define thermodynamic Stability Write any two limitations of Crystal field theory. Understanding Based - Give relation | Knowledge-25
Understanding-45
Higher Order-30 | | | Metal Ligand Bonding Limitation of crystal field theory, molecular orbital theory- σ and π -bonding in octahedral, tetrahedral and square planar complexes. | | Audio Visual
Tutorials,
Diagrams | | between overall stability constant β and stepwise stability constant. - Write a note on Spin Crossover. | | |--|---|--|--|---|---|--| | | Spectroscopic ground state, Selection rules for electronic spectra – Laporte and Spin selection rule, relaxation in rules, luminescence, Orgel diagrams for transition metal complexes (d ₁ -d ₉ States). Charge transfer spectra, anomalous magnetic moments, magnetic exchange coupling and spin crossover. | Electronic Spectra and Magnetic Properties of Transition Metal Complexes | PPT, Chart
Online Quiz | Summarize various concepts of electronic spectra and magnetic properties of transition metal complexes. | Higher Order Thinking Skills Based - Draw the Orgel energy level diagram for d ² electronic configuration in | | | June-July | Metal π-Complexes: Metal carbonyls, structure and bonding. Vibrational spectra of metal carbonyls for bonding and structural elucidation, important reactions of metal carbonyls; preparation, bonding structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; tertiary phosphine as ligand. | | 3-D Models,
MCQ | Summarize various metal π-complexes. | octahedral complexes. -Discuss important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes. | | | PRINCI
PHIA GIRLS
(AUTONO
AJM | PAL
5' COLLEGE
MOUS) | | | | Sor | Head
tment of Chemistry
phia Girls' College
onemous), Ajmer | #### SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (FINAL) SEMESTER IV # GROUP-A INORGANIC CHEMISTRY ORGANOMETALLIC CHEMISTRY- CHEM-401(A) Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40(28 Ext; 12 Int) Credit: 06 | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------|---|----------------|---|--|---|--| | SEM IV
February | Unit-I An Introduction to Organometallic Compounds Introduction, Classification and Nomenclature of Organometallic Compounds, Bonding: Stable electron Configuration, Electron Count | Compounds | Diagrams, PPT,
Charts, Problem
Solving Activity | Summarize the basic concepts of organo transition metal complexes. | - What are sandwich compounds? - Define turn over frequency. Understanding | Knowledge25
Understanding-
45
Higher Order-
30 | | | Preference, Electron Counting and Oxidation states, Reaction of Organometallic Compounds- Ligand Subsituition, Oxidative addition and Reductive elimination, σ bond metathesis, 1, 1- Migratory insertion, 1, 2- insertions and β hydride elimination and Cyclometallations. Concept of Isolability and Isolobal analogies. | * | | | Based - Describe σ bond metathesis with one example Discuss the energetics of catalytic cycle. Higher Order Thinking Skills Based - Elaborate Reductive | 8 | |-------|---|---|--|---|--|---| | March | Unit-III Catalysis Catalytic Cycle, Homogenous Catalysis, Application of Organometallic Compounds as homogenous Catalysts-Hydrogenation of Alkene, Hydroformylation, Wacker process, Alkene Metathesis, Pd catalysed C-C Bond forming reactions, Methanol Carbonylation- ethanoic acid synthesis. Heterogenous Catalysis- the nature of Heterogenous catalysts, Hydrogenation catalysts, Ammonia synthesis, Sulphur dioxide oxidation, Fischer- Tropsch | | Diagrams, PPT,
Flipped
Classroom | Illustrate application of organometallic compounds in homogenous catalysis and heterogenous Catalysis | elimination with one example. - Elaborate Wacker's process of synthesis of acetaldehyde. | | | | synthesis, Alkene Polymerization | | | | | |-----------|---|---|------------------------------------|---|--| | April-May | Unit-II Organometallic compounds of Transition metals Preparation, Properties, Nature of Bonding and Structural features of σ bonded Transition metal complexes and Complexes with unsaturated organic molecules alkenes, alkynes, allyl and diene. | Preparation, properties and reactions of organotransition metal complexes | PPT, Flow charts,
Demonstration | Elaborate the chemistry of organo transition metal complexes. | | | | | | | | | | | | | | | ¥ | | | 1 2 1 | | | | | | | PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
AJMER | | | | Head Department of Chemistry | | | (AUTONOMOUS)
AJMER | | | | Sophia Girls' College
(Autonomous), Ajmer | #### SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.SC CHEMISTRY (FINAL) SEMESTER IV # SUPRAMOLECULAR AND BIOINORGANIC CHEMISTRY (CHEM-402 A) Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40(28 Ext; 12 Int) Credit: 06 | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------|--|-----------------------------|-------------------------------|---|---|--| | SEM IV
April | Metals deficiency and disease,
toxic effects of metals, metals
used for diagnosis and
chemotherapy with particular
reference to anticancer drugs
based on Pt. | Metals In Medicine | Diagrams, PPT,
Charts. | Discuss the role of metals in medicine. | Knowledge Based - Define Porphyrin Draw the structure of Haemoglobin. Understanding | Knowledge25
Understanding-45
Higher Order-30 | | | Vnit-III Nitrogen Fixation-Biological nitrogen Fixation and its mechanism, Nitrogenase, Chemical Nitrogen Fixation and other Nitrogenase model system | | | | Based - Discuss the Cooperativity Compare the structure and reactivity of hemoglobin and myoglobin. | | | May | Oxygen transport and oxygen uptake proteins - Haemoglobin | Haemoglobin and Myoglobin : | PPT, Flow charts,
Diagrams | Analyse haemoglobin and | Higher Order | | | Su. Pearl | | | Tary_ | | |--|---------------------------------|--|---|---| | | | | | | | (Hb) and Myoglobin (Mb) in oxygen transport mechanism. Structural feature of Heme group in Hb and Mb. Functions of Hb and Mb. Characteristics of oxygen binding interactions with Hb and Mb Cooperativity, Bohr's Effect, poising effect of CO and other Ligands, Genetic defects, Non-heme proteins: Hemerythrin and Hemocyanin | Structure, functions, mechanism | myoglobin in oxygen transport mechanism. | Thinking Skills Based - Elaborate the Metals deficiency and disease Explain in detail biological nitrogen fixation. | • |