SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER COURSE_PLAN_2021-22_DR_TANVEER _ALAM_KHAN # COURSE PLAN U.G. & P.G. Programs 2021-22 ODD SEMESTER # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER B. Sc. I (SEMESTER-I) ### INORGANIC CHEMISTRY (PAPER I) (CHE-101) Wax Marks: 75 (50 EM; 25 Int) Min. Marks: 30 (20 Ext; 10 Int) Credit: 03 | SEM /
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------------------------|---|---|--|---|--|---| | SEM 1/
DECEMBER | UNIT III Nuclear Chemistry Introduction, fundamental particles of nucleus, concept of nuclides and its representation, types of nuclides-isotopes, isobars, isotones and nuclear isomers, stability of nucleus (n/p ratio) | Basic concepts of nuclides and their importance | PPT, Chart,
Audio-visual
tutorials,
Quizzes | Discuss the concept of nuclear chemistry and radioactivity. | -Define isotopes, isobars and isotones. Understanding Based | Knowledge-60
Understanding-30
Higher Order-10 | | I
I
S
I
I
r
a
a | Radiochemistry Introduction to radioactivity, Natural and Artificial radioactivity, Radioactive Disintegration, disintegration series, Radioactive Displacement Law, rate of adioactive decay, Half-life and Average life, pplications of radioactivity, binding energy and its | Concepts of radiochemistry, radioactive decay, half-life and average life of radioactive substances | Chart, PPT,
Diagrams,
Quizzes | | -Describe the applications and importance of half-life of radioactive substances. Higher Order Thinking Skills Based -Explain the concept of nuclear fission and | | | calculation, mass defect and its calculation, Nuclear reactions: Bethe's Notation for nuclear reactions, Spallation, Nuclear fission | nuclear fusion. | |--|--| | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER | Head Department of Chemistry Sephia Girls' College (Autonomous), Ajmer | | | | # SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER B. Sc. I (SEMESTER-I) ### ORGANIC CHEMISTRY (PAPER II) (CHE-102) Max. Marks: 75 (50 Ext; 25 Int) Min. Marks: 30 (20 Ext; 10 Int) Credit: 03 | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage | |---------------------|--|---|--|---|---|---| | SEM I/
SEPTEMBER | Unit–I Structure and Bonding Hybridization, bond length and bond angles, bondenergy, Vander Waals interactions, inclusion compounds, clatherates, charge transfer complexes, resonance, hyperconjugation, inductive and field effects, hydrogen bonding. | Structure and electronic effects in reference to organic molecules. | PPT, Diagrams,
3D-models,
Audio-visual
tutorials,
Flow Chart | Predict
structure and
bonding in
common
organic
molecules and
mechanism of
organic
reactions. | Enowledge Based -Define Saytzeff rule. -Why peroxide effect is observed in addition of H-Br and not for H-Cl and H-I? | Knowledge-60
Understanding-30
Higher Order-10 | | | Mechanism of Organic | | | | | | |---------|--|--|---|---|---|--| | | Reactions Curved arrow notation, drawing electron movements with arrows, half-headed and full headed arrows, homolytic and heterolytic bond fission, Types of reagents- electrophiles and nucleophiles, Types of organic reactions, Energy considerations, Reactive intermediates- carbocations, carbanions, free radicals, carbenes, arynes and nitrenes | Reagents and
Intermediate in various
Organic reactions | | | Understanding Based -Arrange the following alkenes in the decreasing order of their stabilities explain with reason CH ₂ =CH ₂ , R ₂ C=CH ₂ , R ₂ C=CR ₂ | | | SEM I / | (with example). Unit-II Alkanes | Structure and reactivity | PPT, 3D-
models, | Review the preparation | -Compare the stability of cyclopropane and cyclohexane. | | | OCTOBER | Methods of preparation (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids), physical properties and chemical reactions of alkanes, Mechanism of free radical halogenation of alkanes: | of alkanes | Demonstration,
Audio-visual
tutorials | and chemical
reactions of
alkanes and
cycloalkanes | Higher Order Thinking Skills Based -Justify the unequal formation of 1,2 and 1,4 products in 1,3-butadiene at different temperatures. | | | | orientation, reactivity and selectivity. | | | | -Evaluate substitution
at the allylic and
vinylic positions of
alkenes. | | | | Cycloalkanes Nomenclature, methods of preparation, chemical reactions, Baeyer's strain theory and its limitations, Ring strain in small rings (cyclopropane and cyclobutane), theory of strainless rings, cyclopropane ring: banana bonds. | Structure, stability and reactivity of cycloalkanes | | | | | |--------------------------------|--|---|---|--|--|--| | SEM I/
NOVEMBER
DECEMBER | | Structure and reactivity in context to regioselectivity in different alkenes. | Flow chart,
Diagrams,
3D-Models,
Demonstration | Summarize the chemical behaviour of alkenes, dienes and alkynes. | | | | | oxidation with KMnO ₄ ,
Substitution at the allylic and
vinylic positions of alkenes. | | | | | |------------------------------|--|---|---|---|------------------------------| | 3 | Alkynes Methods of preparation, chemical reactions of alkynes-hydrogenation, halogenation, hydrohalogenation, hydroboration and hydroxylation, ozonolysis of alkynes, acidity of alkynes, mechanism of electrophilic and nucleophilic addition reactions, metal-ammonia reductions and oxidation. | Electrophilic addition and reactions of alkynes | Diagrams,
Models,
Demonstration,
Flow Charts | * | | | | Diens Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes. Structure of allenes and butadiene method of formation, polymerization. Chemical reactions- 1,2 and 1,4 additions, Diels-Alder reaction. | Structure of dienes and
thermodynamic and
kinetic control of
reactions | PPT,
Demonstration,
Flipped
Classroom | | (Car | | SA. PO
PHIA GIRL
WUTON | S' COLLEGE | | | | Head Department of Chemistry | ## SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (FINAL) SEMESTER III (M.Sc. F) # SPECTROSCOPY (CHEM-301) Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40 (28 Ext; 12 Int) Credit: 06 | SEM/
Month | Unit/Topic | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage (%) | |----------------------------------|--|---|-----------------------------------|--|--|---| | SEM III/
SEPTEMBER
OCTOBER | Unit- I 13C NMR Spectroscopy Difficulties and solution for recording 13C-NMR spectra, recording of 13C-NMR spectra, recording of 13C-NMR spectra-scale, solvent, solvent signals, their positions and multiplicity, Chemical shifts in 13C-spectra- correlation chart, chemical shift calculations for alkanes, alkenes, alkynes and aromatic compounds, proton coupled and decoupled, 13C spectra- broad band | Concepts and principles of ¹³ C – NMR Spectroscopy and practical applications based upon various types of ¹³ C NMR-spectroscopy | Diagrams, PPT,
Charts, Quizzes | Summarize the concepts of ¹³ C-NMR spectroscopy | -Why ¹³ C is NMR active while ¹² C is not? -Define base peak in mass spectrometry. -Understanding Based -Compare ¹³ C-NMR and ¹ H-NMR spectroscopy. | Knowledge-25
Understanding-45
Higher Order-30 | | | decoupling, off resonance
technique, ¹³ C-DEPT
Spectra-differentiation in
primary, secondary and
tertiary carbons by DEPT-45,
DEPT-90, DEPT-135
Spectra, Nuclear Overhauser
Effect. | | | | -Compare the natural abundance of ¹ H and ¹³ C nuclei with their respective isotopes in context of NMR spectroscopy. Higher Order | | |----------|--|--|--|---|--|--| | SEM III/ | Unit-II Mass Spectroscopy Introduction, Instrumentation- sample inlet, ion production- EI, CI, FD and FAB, separations of ions in mass analyser, ion detector- recorder, Isotope abundances, molecular ion, metastable ions, Nitrogen rule, Fragmentation- general modes, factors affecting fragmentation, Mass spectral fragmentation of some classes of organic compounds and common functional groups- Alkanes, | Instrumental and spectral aspects of Mass Spectroscopy | Quizzes,
Diagrams,
Audio-visual
tutorials | Analyse the mass spectral fragmentation of organic compounds for their structure determination. | Thinking Skills Based -Elaborate the use of ¹³ C- spectra in differentiating the primary, secondary and tertiary carbons by DEPT-45, DEPT-90 and DEPT- 135 spectra. - Explain High Resolution Mass Spectrometry (HRMS) in detail. | | | SEM III/
DECEMBER | nitriles. High Resolution Mass Spectrometry. Unit-III UV-Visible, IR, ¹ H- NMR, ¹³ C- NMR, MASS- interpretation of common organic compounds. | Applications of various spectroscopic techniques | PPT, Flow
charts, quizzes,
audio-visual
tutorial | Interpret the structure of different organic compounds with the help of spectroscopic data. | | | |----------------------|--|--|---|---|------|--| | |) | | | | (100 | | ### SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (PREVIOUS) SEMESTER III (M.Sc. F) ### Practical (CHEM-305) Max. Marks: 100 (70 Ext; 30 Int) Min. Marks: 40 (28 Ext; 12 Int) Credit: 06 | SEM/
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage
(%) | |----------------------------------|---|---|--|--|---|---| | SEM III/
SEPTEMBER
OCTOBER | A. INORGANIC PREPARATIONS 1. Prepare sodium amide 2. Prepare calcium oxalate 3. Prepare magnesium oxalate 4. Prepare sodium tetrathionate Na₂S₄O₆ 5. Prepare vanadyl acetylacetonate VO(acac)₂ 6. Prepare Fe(acac)₂ 7. Prepare R₂Sn(acac)₂ 8. Prepare Cr(acac)₂ 9. Prepare Cu(acac)₂ H₂O 10. Prepare Al(acac)₃ 11. Prepare tris (acetyl acetanato) manganese(II) 12. Prepare Fe(II) chloride 13. Prepare ferrocene 14. Prepare copper glycine complex. 15. Prepare CuCl₂.2DMSO | Methods of
Synthesis of various
inorganic compounds | Demonstration
of the exercises
with use of
different
apparatus and
glassware,
Diagrams | Understand
the practical
applications
of various
aspects of
chemistry | Knowledge Based -Practical File Work Understanding Based -To study the effect of addition of an electrolyte on the solubility of an organic acid. -To study the Beer- Lambert's law | Knowledge-20
Understanding-40
Higher Order-40 | | SEM III/ | B. PHYSICAL | Use of various | Demonstration | Understand | using
absorption | | | |----------|---|-------------------------------------|--------------------------------------|----------------------------|--|------|--| | DECEMBER | CHEMISTRY | instruments like
colorimeter, pH | of Exercises
with | the practical applications | phenomenon
by colorimeter. | | | | | Determine the partial molar volume of solute | meter. | use of different
instruments like | of various
aspects of | by colorinieter. | | | | | and solvent in a binary
mixture. | | pH meter,
colorimeter | chemistry | <u>Higher Order</u>
Thinking Skills | | | | | Study the effect of addition of an electrolyte | | etc., Diagrams | | Based | | | | | on the solubility of an
organic acid. | | | | -Viva- Voce | | | | | Determine the
composition of binary | | | | | | | | | mixture containing
K ₂ Cr ₂ O ₇ and KMnO ₄ | | | | | | | | | using spectrophotometer. 4. Determine the heat of | | | | | | | | | neutralization of
hydrochloric acid by | | | | | | | | | sodium hydroxide. 5. Determine the heat | | | | | | | | | neutralization of two acids
eg HCl and CH ₃ COOH | | | | | | | | | and hence their relative strengths. | | | | | | | | | Study the adsorption of
iodine form alcoholic | | | | | | | | | solution on charcoal. | | | | | -117 | | | | Study the adsorption of
certain dyes such as | | | | | | | | | methyl violet, picric acid
or malachite green on
charcoal. | | | | | | | | added impurity on rotation of a solute. 9. Estimate the amino acid using ninhydrin method. 10. Verify Beer's law for the | | | | | | | |--|---|--|-----|------|--|---| | solubility and determine
the concentration of the
given unknown aqueous
solution of KMnO ₄ . | | | | | | | | | | | | | Do- | | | | | | | (| Je v | | | Sr. Pearl | | 00.1 | | | Mead . | | | PRINCIPAL
SOPHIA GIRLS' COLLEGE | | So Pearl | | Depa | rtment of Chemist
phia Girls' College | У | | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER | S | PRINCIPAL
OPHIA GIRLS' COLLE
(AUTONOMOUS)
AJMER | EGE | (Au | tonomous), Ajmer | |