

SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER

COURSE_PLAN_2021-22_DR_TANVEER _ALAM_KHAN

COURSE PLAN U.G. & P.G. Programs 2021-22 ODD SEMESTER

SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER B. Sc. I (SEMESTER-I)

INORGANIC CHEMISTRY (PAPER I) (CHE-101)

Wax Marks: 75 (50 EM; 25 Int)

Min. Marks: 30 (20 Ext; 10 Int)

Credit: 03

SEM / Month	UNIT/TOPIC	Concepts/facts	Teaching Pedagogy	Learning Outcomes	Questions	Marks Weightage (%)
SEM 1/ DECEMBER	UNIT III Nuclear Chemistry Introduction, fundamental particles of nucleus, concept of nuclides and its representation, types of nuclides-isotopes, isobars, isotones and nuclear isomers, stability of nucleus (n/p ratio)	Basic concepts of nuclides and their importance	PPT, Chart, Audio-visual tutorials, Quizzes	Discuss the concept of nuclear chemistry and radioactivity.	-Define isotopes, isobars and isotones. Understanding Based	Knowledge-60 Understanding-30 Higher Order-10
I I S I I r a a	Radiochemistry Introduction to radioactivity, Natural and Artificial radioactivity, Radioactive Disintegration, disintegration series, Radioactive Displacement Law, rate of adioactive decay, Half-life and Average life, pplications of radioactivity, binding energy and its	Concepts of radiochemistry, radioactive decay, half-life and average life of radioactive substances	Chart, PPT, Diagrams, Quizzes		-Describe the applications and importance of half-life of radioactive substances. Higher Order Thinking Skills Based -Explain the concept of nuclear fission and	

calculation, mass defect and its calculation, Nuclear reactions: Bethe's Notation for nuclear reactions, Spallation, Nuclear fission	nuclear fusion.
PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER	Head Department of Chemistry Sephia Girls' College (Autonomous), Ajmer

SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER B. Sc. I (SEMESTER-I)

ORGANIC CHEMISTRY (PAPER II) (CHE-102)

Max. Marks: 75 (50 Ext; 25 Int)

Min. Marks: 30 (20 Ext; 10 Int)

Credit: 03

SEM/ Month	UNIT/TOPIC	Concepts/facts	Teaching Pedagogy	Learning Outcomes	Questions	Marks Weightage
SEM I/ SEPTEMBER	Unit–I Structure and Bonding Hybridization, bond length and bond angles, bondenergy, Vander Waals interactions, inclusion compounds, clatherates, charge transfer complexes, resonance, hyperconjugation, inductive and field effects, hydrogen bonding.	Structure and electronic effects in reference to organic molecules.	PPT, Diagrams, 3D-models, Audio-visual tutorials, Flow Chart	Predict structure and bonding in common organic molecules and mechanism of organic reactions.	Enowledge Based -Define Saytzeff rule. -Why peroxide effect is observed in addition of H-Br and not for H-Cl and H-I?	Knowledge-60 Understanding-30 Higher Order-10

	Mechanism of Organic					
	Reactions Curved arrow notation, drawing electron movements with arrows, half-headed and full headed arrows, homolytic and heterolytic bond fission, Types of reagents- electrophiles and nucleophiles, Types of organic reactions, Energy considerations, Reactive intermediates- carbocations, carbanions, free radicals, carbenes, arynes and nitrenes	Reagents and Intermediate in various Organic reactions			Understanding Based -Arrange the following alkenes in the decreasing order of their stabilities explain with reason CH ₂ =CH ₂ , R ₂ C=CH ₂ , R ₂ C=CR ₂	
SEM I /	(with example). Unit-II Alkanes	Structure and reactivity	PPT, 3D- models,	Review the preparation	-Compare the stability of cyclopropane and cyclohexane.	
OCTOBER	Methods of preparation (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids), physical properties and chemical reactions of alkanes, Mechanism of free radical halogenation of alkanes:	of alkanes	Demonstration, Audio-visual tutorials	and chemical reactions of alkanes and cycloalkanes	Higher Order Thinking Skills Based -Justify the unequal formation of 1,2 and 1,4 products in 1,3-butadiene at different temperatures.	
	orientation, reactivity and selectivity.				-Evaluate substitution at the allylic and vinylic positions of alkenes.	

	Cycloalkanes Nomenclature, methods of preparation, chemical reactions, Baeyer's strain theory and its limitations, Ring strain in small rings (cyclopropane and cyclobutane), theory of strainless rings, cyclopropane ring: banana bonds.	Structure, stability and reactivity of cycloalkanes				
SEM I/ NOVEMBER DECEMBER		Structure and reactivity in context to regioselectivity in different alkenes.	Flow chart, Diagrams, 3D-Models, Demonstration	Summarize the chemical behaviour of alkenes, dienes and alkynes.		

	oxidation with KMnO ₄ , Substitution at the allylic and vinylic positions of alkenes.				
3	Alkynes Methods of preparation, chemical reactions of alkynes-hydrogenation, halogenation, hydrohalogenation, hydroboration and hydroxylation, ozonolysis of alkynes, acidity of alkynes, mechanism of electrophilic and nucleophilic addition reactions, metal-ammonia reductions and oxidation.	Electrophilic addition and reactions of alkynes	Diagrams, Models, Demonstration, Flow Charts	*	
	Diens Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes. Structure of allenes and butadiene method of formation, polymerization. Chemical reactions- 1,2 and 1,4 additions, Diels-Alder reaction.	Structure of dienes and thermodynamic and kinetic control of reactions	PPT, Demonstration, Flipped Classroom		(Car
SA. PO PHIA GIRL WUTON	S' COLLEGE				Head Department of Chemistry

SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (FINAL) SEMESTER III (M.Sc. F)

SPECTROSCOPY (CHEM-301)

Max. Marks: 100 (70 Ext; 30 Int)

Min. Marks: 40 (28 Ext; 12 Int)

Credit: 06

SEM/ Month	Unit/Topic	Concepts/facts	Teaching Pedagogy	Learning Outcomes	Questions	Marks Weightage (%)
SEM III/ SEPTEMBER OCTOBER	Unit- I 13C NMR Spectroscopy Difficulties and solution for recording 13C-NMR spectra, recording of 13C-NMR spectra, recording of 13C-NMR spectra-scale, solvent, solvent signals, their positions and multiplicity, Chemical shifts in 13C-spectra- correlation chart, chemical shift calculations for alkanes, alkenes, alkynes and aromatic compounds, proton coupled and decoupled, 13C spectra- broad band	Concepts and principles of ¹³ C – NMR Spectroscopy and practical applications based upon various types of ¹³ C NMR-spectroscopy	Diagrams, PPT, Charts, Quizzes	Summarize the concepts of ¹³ C-NMR spectroscopy	-Why ¹³ C is NMR active while ¹² C is not? -Define base peak in mass spectrometry. -Understanding Based -Compare ¹³ C-NMR and ¹ H-NMR spectroscopy.	Knowledge-25 Understanding-45 Higher Order-30

	decoupling, off resonance technique, ¹³ C-DEPT Spectra-differentiation in primary, secondary and tertiary carbons by DEPT-45, DEPT-90, DEPT-135 Spectra, Nuclear Overhauser Effect.				-Compare the natural abundance of ¹ H and ¹³ C nuclei with their respective isotopes in context of NMR spectroscopy. Higher Order	
SEM III/	Unit-II Mass Spectroscopy Introduction, Instrumentation- sample inlet, ion production- EI, CI, FD and FAB, separations of ions in mass analyser, ion detector- recorder, Isotope abundances, molecular ion, metastable ions, Nitrogen rule, Fragmentation- general modes, factors affecting fragmentation, Mass spectral fragmentation of some classes of organic compounds and common functional groups- Alkanes,	Instrumental and spectral aspects of Mass Spectroscopy	Quizzes, Diagrams, Audio-visual tutorials	Analyse the mass spectral fragmentation of organic compounds for their structure determination.	Thinking Skills Based -Elaborate the use of ¹³ C- spectra in differentiating the primary, secondary and tertiary carbons by DEPT-45, DEPT-90 and DEPT- 135 spectra. - Explain High Resolution Mass Spectrometry (HRMS) in detail.	

SEM III/ DECEMBER	nitriles. High Resolution Mass Spectrometry. Unit-III UV-Visible, IR, ¹ H- NMR, ¹³ C- NMR, MASS- interpretation of common organic compounds.	Applications of various spectroscopic techniques	PPT, Flow charts, quizzes, audio-visual tutorial	Interpret the structure of different organic compounds with the help of spectroscopic data.		
)				(100	

SOPHIA GIRLS' COLLEGE (AUTONOMOUS), AJMER M.Sc. CHEMISTRY (PREVIOUS) SEMESTER III (M.Sc. F)

Practical (CHEM-305)

Max. Marks: 100 (70 Ext; 30 Int)

Min. Marks: 40 (28 Ext; 12 Int)

Credit: 06

SEM/ Month	UNIT/TOPIC	Concepts/facts	Teaching Pedagogy	Learning Outcomes	Questions	Marks Weightage (%)
SEM III/ SEPTEMBER OCTOBER	 A. INORGANIC PREPARATIONS 1. Prepare sodium amide 2. Prepare calcium oxalate 3. Prepare magnesium oxalate 4. Prepare sodium tetrathionate Na₂S₄O₆ 5. Prepare vanadyl acetylacetonate VO(acac)₂ 6. Prepare Fe(acac)₂ 7. Prepare R₂Sn(acac)₂ 8. Prepare Cr(acac)₂ 9. Prepare Cu(acac)₂ H₂O 10. Prepare Al(acac)₃ 11. Prepare tris (acetyl acetanato) manganese(II) 12. Prepare Fe(II) chloride 13. Prepare ferrocene 14. Prepare copper glycine complex. 15. Prepare CuCl₂.2DMSO 	Methods of Synthesis of various inorganic compounds	Demonstration of the exercises with use of different apparatus and glassware, Diagrams	Understand the practical applications of various aspects of chemistry	Knowledge Based -Practical File Work Understanding Based -To study the effect of addition of an electrolyte on the solubility of an organic acid. -To study the Beer- Lambert's law	Knowledge-20 Understanding-40 Higher Order-40

SEM III/	B. PHYSICAL	Use of various	Demonstration	Understand	using absorption		
DECEMBER	CHEMISTRY	instruments like colorimeter, pH	of Exercises with	the practical applications	phenomenon by colorimeter.		
	Determine the partial molar volume of solute	meter.	use of different instruments like	of various aspects of	by colorinieter.		
	and solvent in a binary mixture.		pH meter, colorimeter	chemistry	<u>Higher Order</u> Thinking Skills		
	Study the effect of addition of an electrolyte		etc., Diagrams		Based		
	on the solubility of an organic acid.				-Viva- Voce		
	 Determine the composition of binary 						
	mixture containing K ₂ Cr ₂ O ₇ and KMnO ₄						
	using spectrophotometer. 4. Determine the heat of						
	neutralization of hydrochloric acid by						
	sodium hydroxide. 5. Determine the heat						
	neutralization of two acids eg HCl and CH ₃ COOH						
	and hence their relative strengths.						
	Study the adsorption of iodine form alcoholic						
	solution on charcoal.					-117	
	 Study the adsorption of certain dyes such as 						
	methyl violet, picric acid or malachite green on charcoal.						

added impurity on rotation of a solute. 9. Estimate the amino acid using ninhydrin method. 10. Verify Beer's law for the						
solubility and determine the concentration of the given unknown aqueous solution of KMnO ₄ .						
					Do-	
				(Je v	
Sr. Pearl		00.1			Mead .	
PRINCIPAL SOPHIA GIRLS' COLLEGE		So Pearl		Depa	rtment of Chemist phia Girls' College	У
PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER	S	PRINCIPAL OPHIA GIRLS' COLLE (AUTONOMOUS) AJMER	EGE	(Au	tonomous), Ajmer	