SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) ## B.Sc. I (SEMESTER I) # MICROBIOLOGY AND PLANT PATHOLOGY (PAPER II) (BOT 102) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|--|---|---|---|---------------------------------| | JULY | UNIT I Classification of living world (Whittakar's five kingdom classification) | Classification,
Prokaryotes,
Eukaryotes, Cell
structure | Lecture, Group
discussion,
MCQ | | Knowledge Based -What is the basis of Whittakars five kingdom classification? | Knowledge60
Understanding-30 | | | Bacteria- structure, reproduction (Binary fission, transformation, conjugation & transduction). Gram staining, economic and biological importance | Prokaryotic cell
structure, Reproduction,
Gram positive and Gram
negative Bacteria,
Economic importance of
bacteria | Lecture, Diagrams, Demonstration, Open book questions, Assignment | Relate the
structure and
nature of
micro-
organisms | -Draw a prokaryotic cell. Understanding Based -Outline the procedure of gram stainingSummarize the | Higher Order-10 | | | General features of:
Rickettsias, Archaebacteria
and Actinomycetes | Comparison of different groups of bacteria | Group
discussion,
Lecture, Quiz | | characteristics of Archaebacteria. Higher Order Thinking Skills Based | | | AUGUST | UNIT II Virus- Structure, multiplication and transmission of virus (TMV | Capsid, Lysis,
Lysogeny,
Bacteriophage | Diagrams, Pictures, Lecture, Group discussion | Understand the etiology and epidemiology of plant | multiplication in virus. | . r -1 -1 | | | & Bacteriophage) | | | | -Appraise the economic importance | | |------------------------|---|--|---|---|-----------------------------------|-------| | | Mycoplasma- structure and economic importance. Phytoplasma, Little leaf of brinjal | Pleomorphic, Disease
symptoms, Pathogenic
aspect of mycoplasma | Diagrams,
Pictures,
Lecture, quiz | | of bacteria. | | | | A general account of diseases caused by plant pathogens: Bacterial diseases- Citrus canker, Tundu disease of wheat Viral disease- Tobacco mosaic | Causal organism, Disease symptoms, Control measures | Diagrams, Pictures, Specimens, Lecture | | | | | SEPTEMBER-
NOVEMBER | UNIT III Host parasite interaction, Important symptoms of plant diseases caused by fungi | Host, Parasite, Necrosis,
Hypertrophy, Rust,
Mildew | Assignment Diagrams, Pictures, Specimens, Lecture | Predict the control measures to minimize the adverse effect | | | | | Disease cycle and control of: Fungal diseases- White rust of crucifers, Green ear disease of bajra, Loose Smut of wheat, Red rot of sugarcane, Tikka disease of groundnut | Etiology, Epidemiology,
Control measures | Diagrams, Pictures, Specimens Lecture | of pathogens
on commerc | | Judin | ## B.Sc. II (SEMESTER III) ANATOMY OF ANGIOSPERMS (PAPER I) (BOT-301) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM III
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage (%) | |------------------|---|---|---|---|--|---------------------------------| | JULY | UNIT I The basic body plan of a flowering plant – Modular type of growth | Meristem, node,
internode, leaf
primordium, metamer,
module | Diagrams, Group discussion, Demonstration, Lecture, Quiz | | Knowledge Based -Define peridermList the | Knowledge50
Understanding-35 | | | The shoot system: Shoot apical meristem and its histological organization, Structure of primary shoot in monocotyledons and dicotyledons. | Theories of apical
meristem, dermal
tissue, ground tissue,
vascular tissue | Diagrams, Section cutting, Lecture, Compare and contrast | Anticipate plant
structure at
microscopic
level with the
major goals of
understanding
the structure | organisation. | Higher Order-15 | | , | The root system: Root apical meristem, Differentiation of primary and secondary tissues and their roles, Structural modification for storage, respiration, reproduction and for interaction with microbes | Theories of apical
meristem, dermal
tissue, ground tissue,
vascular tissue, storage
root, aerial root,
mycorrhiza, root nodule | Diagrams, Section cutting, Lecture, Compare and contrast Assignment | common to all vascular plants | importance of cambium? -Examine the structure and function of xylem. Higher Order Thinking Skills | Sadla | | AUGUST | UNIT II Cambium and its functions, Formation of secondary xylem, A general account of wood in relation to conduction of water | Secondary growth,
structure and function
of xylem | Diagrams,
Section cutting,
Lecture | Explain the developmental | Based -Compare a dicot and a monocot stemPredict the | | | | _ | $\overline{}$ | 1 | |------|--------------------|---------------|---| | 3 | | The . | | | | THE REAL PROPERTY. | | | | 100 | THE STATE OF | | | | | | | | | | | т. | , | | | | S | | | | ~ | 440 | 8 | | NEEK | 71 | A STORY | | | | - | | | | | and minerals | | Diograms | processes that
leads to mature
anatomy and | consequences of anomalous growth in | | |------------------------|--|---|--|--|-------------------------------------|---| | | Characteristics of growth rings,
Sap wood and heart wood,
Secondary phloem: structure
and function, | Annual rings, elements of phloem | Diagrams, Section cutting, Lecture | anomalous
growth in plants | Salvadora stem. | | | | Periderm. Anomalous growth: primary (<i>Triticum, Nyctanthes</i>) and secondary (<i>Salvadora</i> , <i>Bignonia, Dracaena</i>) | Cork cambium,
lenticels, cortical
bundles, phloem islands | Diagrams,
Section cutting,
Lecture | | | | | SEPTEMBER-
NOVEMBER | UNIT III Leaf: Origin and development | Primordium, meristem, | Diagrams,
Lecture | Relate the internal structure and | | | | NOVEMBER | Internal structure in relation to photosynthesis and water loss | Mesophyll, stomata,
monocot and dicot leaf | Diagrams, Section cutting, Lecture, Compare and contrast | adaptations to
water stress | | | | | Adaptations to water stress, Senescence and abscission | Xerophytes, abscission zone | Diagrams,
Lecture | | | 1 | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Department of Botany Sophia Girls College (Autonomous), Ajmer ## B.Sc. III (SEMESTER V) #### PLANT PHYSIOLOGY AND METABOLISM (PAPER I) (BOT-501) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|--|--|--|--|--|--| | JULY | UNIT I Plant-water relations: Importance of water to plant life, Physical properties of water, diffusion and osmosis, Absorption, transport of water, Transpiration: physiology of stomata | Hydrogen bond,
cohesion, adhesion,
DPD, osmosis,
plasmolysis,
transpiration | Diagrams, Lecture, Demonstration, Cooperative learning | Interpret the fundamental | Knowledge Based -Recall the girdling experimentDefine transpiration. Understanding Based -What do you | Knowledge40
Understanding-40
Higher Order-20 | | | Transport of organic
substances: Mechanism of
phloem transport, Source-sink
relationship | Girdling, source, sink,
hydrostatic pressure | Diagrams,
Lecture, group
discussion, Quiz | concepts of
plant
physiology and
enzymology | conclude by studying osmosis? -Summarize the role of ATP as biological energy | Sandy) | | | Basics of enzymology: Nomenclature, Characteristics, Concept of holoenzyme, apoenzyme, coenzyme and cofactors, Mechanism of | Catalyst, specificity, classification, coenzyme, activation energy, K _m value | Diagrams, Lecture, Demonstration, open book questions | | Higher Order Thinking Skills Based -Explain pentose phosphate | | | | action, Michaelis-Menten
equation and its significance,
Regulation of enzyme activity | | | | pathwayDiscuss nitrogen fixation. | | |------------------------|---|--|--|--|-----------------------------------|---------| | AUGUST | UNIT II Photosynthesis: Pigments, Light harvesting complexes, Absorption and action spectra, Enhancement effect, Concept of two photosystems, Z- scheme, Photophosphorylation, | Photosystem, red drop,
Z-scheme, light
reaction, cyclic and non
cyclic ETC, synthesis
of ATP | PPT, Diagrams,
Lecture,
Cooperative
learning | | | | | | Calvin cycle, C ₄ pathway,
CAM plants, Photorespiration | Dark reaction, reduction of CO ₂ , C ₂ cycle | PPT, Diagrams,
Lecture,
Compare and
contrast | Compare photosynthesis and respiration | | | | | Respiration: ATP-the biological energy currency, Aerobic and anaerobic respiration, Kreb's cycle, Electron transport mechanism (chemi-osmotic theory), Oxidative phosphorylation, Pentose phosphate pathway | Glycolysis, TCA cycle,
phosphorylation, HMP
pathway | Diagrams,
Lecture, group
discussion,
Experiment | | | Sorelly | | SEPTEMBER-
NOVEMBER | UNIT III Mineral nutrition: Essential macro- and micro-elements, their role, Deficiency and toxicity symptoms | Macro- and micro-
elements, role in plants | Assignment,
quiz, Open book
assessment | Explain the process of | | | | | Nitrogen metabolism: Biology of nitrogen fixation, Importance of nitrate reductase | Nitrate reduction,
symbiotic N ₂ fixation,
diazotrophs,
leghaemoglobin. | Diagrams,
Lecture | nitrogen and
lipid
metabolism | | | | and its regulation, Ammonia assimilation. | GOGAT pathway | | | | |--|--------------------------------|--|---|------| | Lipid metabolism: Structure
and function of lipids, Fatty
acid biosynthesis, | Lipids, fats, glyoxylate cycle | Diagrams,
Lecture, PPT | | | | β-oxidation, Storage and mobilization of fatty acids. | | And the second states of s | | | | PRINCIPAL
A GIRLS' COLLEGE
UTONOMOUS)
AJMER | | | Head Department of Botany Sophia Girls' College (Autonomous), Ajmer | Lady | | AJMER | | | | | | | | | | | | | | | | | ## SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) ## B.Sc. I (SEMESTER II) #### CELL BIOLOGY (PAPER II) (BOT 202) Min. Marks: 30(20 Ext;10 Int) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext; 10 Credit: 03 | SEM 1
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|--|--|--|--|---|--| | DECEMBER-
JANUARY | UNIT I Structure of Prokaryotic and Eukaryotic cell The cell envelopes: structure and function of Plasma | Prokaryotes, Eukaryotes, Cell structure Fluid mosaic model, layers of cell wall | Group discussion, Lecture, Compare and contrast Lecture, Diagrams, Quiz, | Illustrate
structure and
function of
cell and cell
organelles | Knowledge Based -Which organelle has tonoplast? -List the types of DNA. Understanding Based -Distinguish the | Knowledge60
Understanding-30
Higher Order-10 | | | Structure and function of cell organelles: Golgi body, Endoplasmic reticulum, Peroxisome, Vacuole, Mitochondria, Chloroplast, Ribosome and Centriole | Processing and packaging of proteins, microbodies, respiration, photosynthesis | Group
discussion,
Lecture,
Compare and
contrast | | structure of ER and Golgi apparatusWhat is the function of nucleus? Higher Order Thinking Skills Based -Examine the structural | Sodin | | FEBRUARY | UNIT II Nucleus: Structure and function of Nucleus and Nucleolus | Nuclear pore,
nucleoplasm,
chromatin, nuclear
lamina | Diagrams, Pictures, Lecture, Cooperative learning | Describe
chromosome
organization
and
chromosome
alterations | organization of chromosomeHow does cdk's influence cell cycle? | | | | Chromosome organisation:
Structure, Euchromatin and
Heterochromatin | Chromonema,
chromomere,
kinetochore,
chromatid, telomere | Diagrams, Pictures, Lecture, Compare and contrast | | | | |--|--|--|---|---|--|--| | | Chromosomal alterations: Structural changes in Chromosomes (Deletion, Duplication, Translocation and Inversion), Numerical Changes in Chromosomes: [Aneuploidy | Deletion, Duplication,
Translocation and
Inversion, aneuploidy,
euploidy | Diagrams,
Lecture,
Assignment | | | | | | (Monosomy, Nullisomy,
Trisomy, and Tetrasomy),
Euploidy (Monoploidy and
Polyploidy)] | | | | | | | MARCH | UNIT III DNA: Structure, Types (A, B, C and Z), Replication and DNA-protein interaction (Nucleosome Model) | Nucleoside,
nucleotide, double
helix, semi-
consevative, histone
core | PPT, Diagrams,
Lecture | Correlate DNA structure, cell cycle and cell division | | | | | Genetic code, Satellite and
Repetitive DNA | Triplet codon,
properties of genetic
code, repetitive DNA | Group
discussion,
Lecture, Quiz | | | | | PRINCIPAL
GIRLS' COLLEGE
ITONOMOUS)
AJMER | Cell cycle: Steps, Regulation and control Cell division: Mitosis and Meiosis, Significance. | Interphase, G ₁ , S, G ₂ , M phase, CDKs, prophase, metaphase, anaphase, telophase | Group
discussion,
Lecture, Slide
preperation | SODI | Head
tment of Botany
ia Girls' College
nomous), Aimer | | # B.Sc. II (SEMESTER IV) REPRODUCTION IN FLOWERING PLANTS (PAPER II) (BOT-402) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM III | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions Knowledge | (%) | |-------------------------|--|--|---|---|--|--| | Month DECEMBER- JANUARY | UNIT I Flower: Structure, Types of anther and pistil | Polyandrous,
Monoadelphous,
syngenesious, superior,
inferior, unilocular | Diagrams,
Group
discussion, Field
observations | Compare the structure and | Based -Draw and label the structure of ovuleWhere does | Knowledge50
Understanding-35
Higher Order-15 | | | Male gametophyte: Structure of anther, Microsporogenesis, Role of tapetum, Pollen germination and growth of pollen tube. | dithecous, microspore, Po | dithecous, microspore, pollen tetrads Monothecous, dithecous, microspore, pollen tetrads Diagrams, Permanent slide Lecture, quiz gam | development of
male and female
gametophyte | microsporogene sis occurs? Understanding Based -Interpret pollen pistil | | | | Female gametophyte: Structure and types of ovule, Megasporogenesis, Organisation of embryo sac | Orthotropous,
anatropous, megaspore,
polygonum type,
synergids | Group
discussion,
Diagrams,
Permanent slide,
Lecture | Historia | interactionCategorize methods ovegetative propagation. Higher Order | *** | | FEBRUARY | UNIT II Types of pollination, Pollen- pistil interaction | Self and cross
pollination, herkogamy,
heterostyly,
ornithophilly, exine,
stigma | Lecture, Quiz | Illustrate
reproduction in
plants from
pollination to
embryogenesis | eproduction in plants from pollination to pollinati | | | | Self incompatibility, Double fertilization | GSI, SSI, recognition-
rejection, syngamy,
triple fusion | Diagrams,
Lecture, group
discussion | | dormancy. | | | | | | ۸ | | 2019-20 | |---|---|--|--|--|---------| | | Endosperm, Embryogenesis | Nuclear, cellular,
helobial endosperm,
proembryo | Diagrams,
Lecture,
Compare and
contrast | | | | MARCH | UNIT III
Methods of Vegetative
propagation | Natural, artificial,
cutting, layering,
grafting | Assignment, group discussion | Understand the concept of latent life in plants | | | | Latent life-Dormancy:
Importance and types of seed
dormancy, overcoming seed
dormancy. | Primary and secondary
dormancy,
stratification, pre-
chilling, ripening | Demonstration,
Lecture, quiz | | | | . 0 | Parthenocarpy, Types of fruits | Caryopsis, capsule,
lomentum, berry, drupe,
cremocarp | Diagrams,
Lecture,
specimens | | | | PRINCIP
PHIA GIRLS'
(AUTONON
AJMER | PAL
COLLEGE
IOUS) | | | Department of Botany
Sophia Girls' College
(Autonomous), Ajmer | Sarchy | ## B.Sc. III (SEMESTER VI) # GENETICS AND BIOTECHNOLOGY OF PLANTS (PAPER II) (BOT-602) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|--|--|---|--|---|--| | DECEMBER-
JANUARY | UNIT I Genetic inheritance: Mendelism, Laws of segregation and independent assortment | Gene, dominant,
recessive, allele,
inheritance | Lecture,
numerical, group
discussion | Deduce how genes function and how characters are | Knowledge Based -What is a promoter? -Relate linkage and crossing over. | Knowledge40
Understanding-40
Higher Order-20 | | | Linkage and linkage mapping,
Allelic and non-allelic
interactions | Linked genes, test
cross, back cross,
genotype, phenotype | Lecture,
numerical,
Cooperative
learning | inherited from
one generation
to the next | Understanding Based -Identify the type of gene | | | | Gene expression: Transfer of genetic information-transcription, translation, Regulation of gene expression in prokaryotes and eukaryotes | Central dogma,
initiation, elongation,
termination,
attenuation, anti-
termination | Diagrams,
Lecture,
Compare and
contrast | | interaction with F ₂ ratio 9:7Assess the method of DNA repair. Higher Order | e lad | | FEBRUARY | UNIT II Genetic variations: Mutations-spontaneous and induced, DNA repair | Mutagen, transition,
transversion, base
analogues, mismatch
repair | Lecture,
diagrams,
Assignment | Analyze the | Thinking Skills Based -What is the importance of | . T. | | A second | Genetic engineering: Tools | rDNA, vector, marker | Lecture, | biotechnological | reporter genes? | | | ٠, | | _ | | | |----|-----|----|------|-----| | ш | | | A. | | | ш | | | | | | ш | 110 | | | | | ı | | 4 | Н | | | A | ~ | _ | | | | C | 6EK | _ | wi10 | 100 | | | _ | YE | | | | | and techniques of recombinant
DNA technology, Cloning
vectors, Genomic and cDNA
library, Polymerase Chain
Reaction | gene, plasmid, phage cDNA, | diagrams,
Cooperative
learning | modifying
living
organisms
according to
human purposes | -Elaborate
translation in
prokarytoes. | | |-------|---|---|---|--|--|-----------| | MARCH | UNIT III Biotechnology: Definition, Basic aspects of plant tissue culture, Somatic hybridization- protoplast isolation, fusion and culture | Totipotency, culture,
nutrient medium,
sterilization, aseptic,
protoplast, somatic
hybrid, cybrid | Diagrams,
Lecture, group
discussion | Understand
basic aspects of
plant tissue | | | | | Biology of Agrobacterium,
Vectors for gene delivery and
vectorless gene transfer | Ti plasmid, Ri plasmid,
T-DNA, opines,
electroporation, particle
gun delivery | Diagrams,
Lecture, group
discussion | culture | | Jonath | | | Marker and reporter genes,
Salient achievements in crop
biotechnology | Selectable and scorable marker, meristem culture, haploid culture,herbicide resistant | Lecture,
assignment | | Head | · | | Sr Pe | our | X | Pearl | 5 | partment of Bota
ophia Girls' Colleg | nny
Je | PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER Department of Botany Sophia Girls' College (Autonomous), Ajmer