SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER # COURSE PLAN (PHYSICS) U.G Programs 2020-21 ### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc. I (SEMESTER I) #### Mechanics (PAPER I) (PHY 101) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 #### COURSE PLAN 2016-19 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|---|--|---|---|--| | AUGUST-
SEPTEMBER | Kinematics of moving fluids, Equation of continuity, Bernoulli's theorem and its applications – atomizer Reynold's number, Stokes law, terminal velocity, Surface Energy, Excess pressure inside soap bubble, liquid drop and air bubble. Surface tension and surface energy, molecular interpretation of surface tension. Torricelli's theorem and ventruimeter. Viscous fluids, Stream line and Turbulent flow, Poiseuille's law, Capillary tube flow | Viscosity. Bernoullie's theorem Bernoullie's theorem applications | Video Lecture,
e-Content
Giving different
examples by
relating with
nature, students-
teacher
discussion, PPT
only for
Theoretical
concept | Calculation of Excess pressure
and also meniscus of different
liquids. Knowledge about the
liquid flow | Knowledge Based -What is Terminal velocity? - Define Pressure | Knowledge60
Understanding-30
Higher Order-10 | | OCTOBER-
NOVEMBER | UNIT II System of particles, centre of mass, centre of mass of two particles and N particles systems, energy and momentum conservation, concepts of elastic and inelastic collisions., motion of centre of mass, concept of reduced mass. | Meaning of angular
momentum, Idea of
centre of mass.
Application of
reduced mass and
calculation of
reduced mass of
different system | Lecture on
meet,Projects
and
assignments,PP
T, Discussion on
Numericals,Sem
inars. | Calculate centre of mass of two particles system, Conservation of angular momentum. | Understanding Based -Write types of Flow of liquidDerive Torricell's theorem. | | |----------------------|--|---|--|---|---|--| | | .Angular momentum of a system of particles, Conservation of angular momentum, angular momentum about an arbitrary point. | | Class test,
Problem
solving
session,
Remedial
classes | | | | | Ser | 9 | Fundamental
knowledge of
collision
Momentum and
detail study of
principles axes. | Diagrams,
Examples,Nume
ricals,PPT | | | | | Elasticity, Small deformations. Young's modulus, Bulk modulus and Modulus of rigidity for ar isotropic solid, Poisson ratio relation between elastic constants. Theory of bending o beams and Cantilever, Torsion o a cylinder, Bending moments and Shearing forces. PCR Machin Head Department of Physics Sciling College (Autonomous), Ajmor | Theory of bending of beams | examples relating with nature, white board teaching, Experimental Discussion ,PPT only for Theoretical concept Experimental Knowledge,PPT only for Theoretical concept,Open book test,Tutorial classes | Knowledge about various rigidity of solids and calculation of bending moment. | Higher Order Thinking Skills Based -Define Collision.Derive the expression for elastic and inelastic collisionFind an expression for Torsion constant. PRINCIPAL SOPHIA GIFLS COLLEGE (AUTONOMOUS) | |--|----------------------------|--|---|---| |--|----------------------------|--|---|---| # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc II (SEMESTER III) Thermodynamics and Statistical Physics (302) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext; 10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|---|--|---|--|--| | JULY | Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics and its limitations. Second law of thermodynamics and its significance, Heat engine, Carnot's Heat engine and its efficiency. Joule Thomson effect, | Basics knowledge of
thermodynamics and
working of Carnot's
Heat engine | Lecture on
meet,teaching
by solving
derivation,PPT,
Examples,group
discussion,Semi
nars, | Explain the laws of Thermodynam ics and thermodynami cal functions. | Knowledge Based -What is II law of thermodynamics - Define an engine. Understanding Based -Compare I & II law | Knowledge40
Understanding-40
Higher Order-20 | | | Thomson effect, Joule-Thomson
(Porous plug) experiment,
conclusions and explanation,
analytical treatment of Joule
Thomson effect | | Quiz,
PPT,Practicles | | of ThermodynamicsWhat are the Helmholtz Functions. | | | AUGUST | Entropy. Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy (H), Gibbs function (G) and the relations between them | | | | | | | | derivation of Maxwell
thermodynamical relations from
thermodynamical functions. | Detail concept of probability and its relation with | Diagrams,
Class
test,Examples, | Compose
Probablity | | | | | Unit – II
Microscopic and Macroscopic
systems, events-mutually exclusive,
dependent and independent. | entrophy | Numericals | Problems and relation between probability and | Higher Order Thinking Skills Based -What is porous plug experiment?Derive | | |---------------|--|---|---|---|--|---| | SEPTEMB
ER | Probability, A- priori Probability Tossing any number of Coins, distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in two boxes of equal size, Micro and Macro states, | | | entropy | expression of Joule –
THomosons effect
-Derive Maxwells
equations | | | OCTOBER - | Probability (Boltzmann's relation). Phase space, Division of Phase space into cells. | | | •Compare
different types
of statistics | | | | Novembe
r | Unit – III Need for Quantum Statistics: three kinds of statistics, basic approach in three statistics basic approach in three statistics | Comparison of:
three kinds of
statistics, Planck's
radiations law. | | and their applications. | | | | . uf Physic | .Bose-Einstein energy distribution
law, Application of B.E. statistics
to Planck's radiation law B.E. gas.
Fermi – Dirac energy distribution
law, F.D. gas and Degeneracy,
Fermi energy and Fermi
temperature. | | Lecture on
meet,teaching
by solving
derivation,PPT,
Examples,group
discussion,Semi
nars,Group
discussion | | Sec | Sr. Pearl PRINCIPAL HIA GIRLS' COLLEGE (AUTONOMOUS) | COURSE_PLAN_2020-21_DR_DEEPMALA_SINGHAL # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) B.Sc III (SEMESTER V) Quantum Mechanics (502) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|---|--|--|--|--| | JULY | UNIT-1 Origin of Quantum theory: Failure of classical Physics to explain the phenomenon such as black body spectrum, Planck's radiation law. Compton effect, De-Broglie hypothesis, | Outcome of
Quantum theory and
Uncertainty principle
and its consequences | Lecture on
meet,teaching
by solving
derivation,PPT,
Examples,group
discussion | •Understand
Fundamental
of Quantum
theory,
Heisenberg
Uncertainty | Knowledge Based -What i a photon? -Define a wave function. Understanding Based -What is | Knowledge30
Understanding-50
Higher Order-20 | | | Uncertainty principle and its consequences gamma ray microscope, diffraction at a single slit. | | Quiz,
PPT,Practicles | principle and its applications. | uncertainty principle -Compare time dependent and time independent | | | AUGUST | . Application of uncertainty principle- (i) Non existence of electron in nucleus (harmonic oscillator. Energy-time uncertainty. | | | | Schrodinger
equations.
Higher Order
Thinking Skills Based | | | | ii) Ground state energy of H-atom (iii) Ground state energy of harmonic oscillator. Energy-time uncertainty. | Schrodinger equation – time dependent and time independent form and its physical significance. | Diagrams,
Class
test,Examples,
Numericals | -Describe
Wave
Function and
types of | - For rectangular potential barrier, calculatef reflection and transmission coefficient Explain photo- | | | | Fundamental postulates of quantum mechanics, eigen function and | | | Schrodinger equation. | electric effect | | |------------------|--|---|---|--|-----------------|--| | | eigen value, degeneracy degeneracy
orthogonality of eigen functions,
commutation relations | | | 8 | | | | | Schrodinger equation – time
dependent and time independent
form | | | | | | | SEPTEMB
ER- | Physical significance of the wave
function and its interpretation,
probability current density | | | Solve various problems | | | | | operators in quantum
mechanics.Expectation values of
dynamical variables, the position,
momentum and energy. | | | related to the
boundary
condition
based on
Schrodinger
equation | | | | OCTOBER November | UNIT-3 Simple Solutions of Schrodinger equation: Time independent Schrodinger equation and stationary state solution, Boundary and continuity conditions on the wave function, particle in one dimensional box, eigen function and eigen values, discrete energy levels extension of results for three dimensional case and degeneracy of levels. Potential step and rectangular potential barrier, calculation of reflection and transmission coefficient, Simple | Application of schrodinger wave equation to solve different problems. | Lecture on
meet,teaching
by solving
derivation,PPT,
Examples,group
discussion, | | so | Sr. Pearl PRINCIPAL PHIA GIRLS COLLEG (AUTONOMOUS) ALMER | | | harmonic oscillator (one
dimensional) eigen function, energy
eigen values, zero point energy. | | | | | | #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) # B.Sc I (SEMESTER II) Waves and Oscillations (202) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | E PLANS EM I Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|---|---|--|---|--| | January-
February | Unit-1 Potential well and periodic oscillations, cases of harmonic oscillations, differential equations and its solutions, Kinetic and Potential energy, Simple harmonic oscillations in-Spring and mass system | What is simple
harmonic oscillator
and time period of
different oscillator | Lecture on
meet,teaching
by solving
derivation,PPT,
Examples,group
discussion,Semi
nars,Group
discussion | To Calculate
time period of
various
oscillators | Knowledge Based -Define simple harmonic motion.? DefineLC circuit- What isInterference? Understanding Based -Calculate time | Knowledge50
Understanding-40
Higher Order-10 | | | Simple and compound pendulum,
Torsional pendulum, Bifilar
oscillations, Helmholtz resonator,
LC circuits, Vibration of magnet,
Oscillation of two masses | | Discussion,Tuto
rial
classes,Class
teaching | | period of Torsional
pendulum
-Compare standing
and Transverse wave
Higher Order | | | March-
April | Unit-2 Waves in media: Speed of transverse waves on a uniform string, Speed of longitudinal waves in a fluid, Energy density and energy transmission in Waves, Typical measurement, Group velocity and phase velocity, their measurements, superposition of waves. Standing waves: Standing waves as normal modes of bounded systems Harmonics and quality of sound: | Meaning of wave
and its equation
Production and
detection of
ultrasonic and
infrasonic waves and
applications | Class
test,assignement
s,project work,
class teaching
on meet,ppt | •Explain
superposition
of waves and
their
application in
standing
waves. | Thinking Skills Based - Derive an expression for maxima and minima in case of of standing waves -Give detail of Human ear. | | |-----------------|--|---|--|---|--|--| | | examples. Production and detection of ultrasonic and infrasonic waves and applications | | | | | | | Line College | Unit-3 Noise and Music: The human ear and its responses, limits of human audibility, intensity and loudness, bel and decibel, the musical scale, temperament and musical instruments. Plane electromagnetic waves in vacuum, Wave equation for E and B of linearly, circularly and elliptically polarised electromagnetic waves. | Wave equation
for E and B of
linearly, circularly
and elliptically
polarised. | Basic
conceptsby
examplesTheor
tical concept by
PPt,Meet classes
for derivation,
Examples,group
disscussion | •Relate Noise
and Music, its
scale and
circularly
elliptically
polarized light | 8 | PRINCIPAL OPHIA GIRLS COLLEGE (AUTONOMOUS) AJMER | #### SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) Sc. II (SEMESTER IV) **ELECTRONICS - II (PHY-402)** Max. Marks: 75 (50 External; 25 Internal) Min. Marks: 30 (20 External; 10 Internal) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-------------------------|---|----------------------------------|---|--|---|--| | SEM I DECEMBER JANUARY | UNIT I Logic circuits: Transistor as a Switch, logic fundamentals, AND, OR, NOT, NOR, NAND, XOR Gate. Boolean algebra. De Morgan's theorem, positive and negative logic, logic gates circuits realization using DTL and TTL Logic, Simplification of Boolean algebra. Working of Saueizer Machine | Oscillators Hartley Oscillator. | Lecture on meet, teaching by solving derivation, PPT, Examples, group discussion, | Summarise
Oscillators and
its types. | Knowledge Based -What is Oscillator? -What is the condition for self-sustained oscillation? | Knowledge60
Understanding-30
Higher Order-10 | | FEBURARY | UNIT II Oscillators, Principle of Oscillation, classification of oscillators, condition for self-sustained oscillation: Barkhausen criterion for oscillation, | Transistor as a Switch. | Group
Discussion,
Lecture method,
Quiz. | Explain | Understanding Based -Disciss AND, OR. | | | FEBURARY | Tuned collector common emitter oscillator, Hartley oscillator, R-C oscillator and its advantages. | DTL and TTL logic. | Demonstration
through
examples, PPT,
Quiz. | Magnetic field
and analysis of
AC circuits | NOT GatesDiscuss De-Morgan's theorem. | | |---|--|---------------------------|---|--|--|--| | MARCH | UNIT III Circuit analysis: Networks and some important definitions, loop and nodal equations based on DC and AC circuits (Kirchhoff's Laws). | Netwoks. | Lecture Method,
PPT, quiz,
numerical
solving method. | Classify Electrostatic properties of conducts and various boundary conditions. | Higher Order Thinking Skills Based - Estimate Kirchhoff law. | | | Flead partment of Physics ophia Girls' College outonomous), Ajmer | Four terminal networks: current voltage conventions open, close and hybrid parameters of any four terminal network, input, output, and mutual independence for an active four terminal network. Various circuits theorems: Superposition, Thevenin, Norton, reciprocity, maximum power transfer and Miller Theorems. | Various circuit theorems. | Lecture Method,
PPT, quiz,
numerical
solving method | | - Expain hybrid
parameters of any
four terminal
network | PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
AMER | # SOPHIA GIRL'S COLLEGE, AJMER (AUTONOMOUS) # B.Sc III (SEMESTER VI) ## Atomic and Molecular Spectroscopy (602) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------|---|--|---|--|--|--| | January | Lasers and Holography: Spontaneous and stimulated emission, density of states, Einstein's A and B coefficients, Ratio of stimulated to spontaneous transitions in a system in thermal equilibrium | Fundamental
knowledge of
LASER and Types of
LASER and
Holography | Lecture on
meet,teaching
by solving
derivation,PPT,
Examples,group
discussion, | • Describe
properties of
LASER, types
of LASER and
Holography
applications. | Knowledge Based -Define LASERWhat is a rigid rotator? Understanding Based -Write application | Knowledge30
Understanding-50
Higher Order-20 | | February | , Energy density of radiation as a result of stimulated emission and absorption, Condition for amplification, Population inversion, Methods of optical pumping | | Quiz,
PPT,Practicles | | of Lasers -Compare Spontaneous and stimulated emission? Higher Order | | | | Energy level schemes of He-Ne and
Ruby lasers, working of a laser
source | | | | Thinking Skills Based - Explain Working of He-Ne LASER | | | May-July | Frank-Hertz experiment and discrete energy states, Stern and Gerlach experiment, Spin and Magnetic moment, Spin Orbit coupling and qualitative explanation of fine structure. Atoms in a magnetic field, Zeeman effect (normal and anomalous), Zeeman splitting. Unit – III Qualitative features of molecular spectroscopy, Rigid rotator, discussion of energy eigen values and eigen functions, Rotational | Detail of Zeeman's splitting and rigid body rotator. | Lecture on meet,teaching by solving derivation, PPT, Examples, group discussion, | •Summarise
Molecular
Spectra and
Raman effect | | | |----------|---|--|--|--|---|--| | March- | Special features of a laser source and their origin. Basic concepts of holography, construction of a hologram and reconstruction of the image. Unit – II Elementary Spectroscopy: Quantum features of one electron spectral lines of hydrogen atom, | Quantum features of one electronand spin-orbit coupling. | Class
test,assignement
s,project work,
class teaching
on board,ppt | •Explain
continous and
descrete enery
levels of one
electron atomp | -Illustrate Rotational
energy levels of
diatomic molecule | |