SOPHIA GIRLS' COLLEGE(AUTONOMOUS), AJMER # SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) B.Sc. I (SEMESTER I) ### MICROBIOLOGY AND PLANT PATHOLOGY (PAPER II) (BOT 102) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30 (20 Ext; 10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|--|--|--|---|---|---------------------------------| | AUGUST | UNIT I Classification of living world (Whittakar's five kingdom classification) | Classification,
Prokaryotes,
Eukaryotes, Cell
structure | Group
discussion, PPT,
Lecture | | Knowledge Based - Define etiology Name any 2 nitrogen fixing bacteria. | Knowledge60
Understanding-30 | | | Bacteria- structure,
reproduction (Binary fission,
transformation, conjugation
& transduction). Gram
staining, economic and
biological importance | Prokaryotic cell
structure, Reproduction,
Gram positive and Gram
negative Bacteria,
Economic importance of
bacteria | PPT, Lecture,
Diagrams,
Quiz,
Demonstration | Relate the
structure and
nature of
micro-
organisms | Understanding Based -Identify the characteristics of protists Summarize the epidemiology of white rust disease. | Higher Order-10 | | | General features of:
Rickettsias, Archaebacteria
and Actinomycetes | Comparison of different groups of bacteria | Group
discussion,
Lecture, PPT,
Quiz | | Higher Order Thinking Skills Based - Compare the | | | SEPTEMBER
OCTOBER | UNIT II Virus- Structure, multiplication and transmission of virus (TMV | Capsid, Lysis,
Lysogeny,
Bacteriophage | Diagrams,
Pictures,
Lecture, PPT | Understand the
etiology and
epidemiology
of plant | symptoms rust, smut
and blister.
- Illustrate
transformation in | | | 31/4 | * | |------|------------| | | 1 | | MEX | VA VILEDOM | | | & Bacteriophage) | | | diseases | bacteria. * . | |-----------------------|---|--|---|---|--| | | Mycoplasma- structure and economic importance. Phytoplasma, Little leaf of brinjal | Pleomorphic, Disease
symptoms, Pathogenic
aspect of mycoplasma | Diagrams,
Pictures,
Lecture, quiz | | | | | A general account of diseases caused by plant pathogens: Bacterial diseases- Citrus canker, Tundu disease of wheat Viral disease- Tobacco mosaic | Causal organism,
Disease symptoms,
Control measures | Analysing
visuals,
Diagrams,
Specimens,
Lecture | | | | OCTOBER –
NOVEMBER | UNIT III Host parasite interaction, Important symptoms of plant diseases caused by fungi | Host, Parasite, Necrosis,
Hypertrophy, Rust,
Mildew | PPT, Assignment Diagrams, Specimens, Lecture | Predict the control measures to minimize the adverse effect | | | and lugs | Disease cycle and control of:
Fungal diseases- White rust
of crucifers, Green ear
disease of bajra, Loose Smut
of wheat, Red rot of
sugarcane, Tikka disease of
groundnut | Etiology, Epidemiology,
Control measures | Analysing
visuals,
Diagrams,
Pictures,
Specimens, PPT | of pathogens
on commercial
crops | SOPHIA COLLEGE SOPHIA CONTROLLONOMOUS) | Head Department of Botany Sophia Girls' College (Autenomous), Aimer # B.Sc. II (SEMESTER III) ## ANATOMY OF ANGIOSPERMS (PAPER I) (BOT-301) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30 (20 Ext; 10 Int) Credit: 03 | SEM III
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |-----------------------|---|---|---|---|--|---------------------------------| | JULY –
AUGUST | UNIT I The basic body plan of a flowering plant – Modular type of growth | Meristem, node,
internode, leaf
primordium, metamer,
module | Diagrams,
Group
discussion,
Lecture | | Knowledge Based - List the types of meristems Recall the ground tissue system in | Knowledge50
Understanding-3: | | | The shoot system: Shoot apical meristem and its histological organization, Structure of primary shoot in monocotyledons and dicotyledons. | Theories of apical
meristem, dermal
tissue, ground tissue,
vascular tissue | Analysing
visuals,
Diagrams,
Experiential
learning, Lecture,
Self-practice | Anticipate plant
structure at
microscopic
level with the
major goals of
understanding | Understanding Based -What is the significance of mycorrhiza? | Higher Order-15 | | , | The root system: Root apical meristem, Differentiation of primary and secondary tissues and their roles, Structural modification for storage, respiration, reproduction and for interaction with microbes | Theories of apical
meristem, dermal
tissue, ground tissue,
vascular tissue, storage
root, aerial root,
mycorrhiza, root nodule | Analysing
visuals,
Diagrams,
Experiential
learning
Assignment,
Lecture, PPT | the structure common to all vascular plants Higher Order Thinking Skills Based - Signify the role of | | | | AUGUST –
SEPTEMBER | UNIT II Cambium and its functions, Formation of secondary xylem, A general account of wood in | Secondary growth,
structure and function
of xylem | Diagrams,
Experiential
learning, PPT,
pdf Notes, | Explain the | roots in respiration Describe leaf abscission. | | | | relation to conduction of water and minerals | | Lecture | developmental
processes that
leads to mature | | | |-------------------------|---|---|--|--|---|---| | | Characteristics of growth rings,
Sap wood and heart wood,
Secondary phloem: structure
and function, | Annual rings, elements of phloem | Experiential
learning, PPT,
Diagrams,
Lecture | anatomy and
anomalous
growth in plants | | ٠ | | | Periderm. Anomalous growth:
primary (Triticum, Nyctanthes)
and secondary (Salvadora,
Bignonia, Dracaena) | Cork cambium,
lenticels, cortical
bundles, phloem islands | Experiential
learning, PPT,
Diagrams
Lecture | | | | | SEPTEMBER
- NOVEMBER | UNIT III Leaf: Origin and development | Primordium, meristem, | PPT, Diagrams,
Lecture | Relate the internal structure and | | | | | Internal structure in relation to photosynthesis and water loss | Mesophyll, stomata,
monocot and dicot leaf | Experiential
learning, PPT,
Diagrams,
Lecture | adaptations to water stress | | | | | Adaptations to water stress,
Senescence and abscission | Xerophytes, abscission zone | PPT, Diagrams
Lecture | | / | | Department of Botany Sophia Girls' College (Autonomous), Aimer PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) AJMER #### B.Sc. III (SEMESTER V) ### PLANT PHYSIOLOGY AND METABOLISM (PAPER I) (BOT-501 - A) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30 (20 Ext; 10 Int) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |---------------------|--|--|---|------------------------------------|--|--| | JULY –
AUGUST | UNIT I Plant-water relations: Importance of water to plant life, Physical properties of water, diffusion and osmosis, Absorption, transport of water, Transpiration: physiology of stomata | Hydrogen bond,
cohesion, adhesion,
DPD, osmosis,
plasmolysis,
transpiration | Experiential
learning,
Lecture, Group
discussion, PPT,
YouTube videos | Interpret the fundamental | Knowledge Based - What is suction pressure? - Define sap. Understanding Based - Explain glycolysis Give examples of diffusion. Higher Order Thinking Skills Based - Compare PS I & PS II Interpret the role of ATP in cells. | Knowledge40
Understanding-40
Higher Order-20 | | | Transport of organic
substances: Mechanism of
phloem transport, Source-sink
relationship | Girdling, source, sink,
hydrostatic pressure | Diagrams,
Lecture, Group
discussion | concepts of
plant
physiology | | | | AUGUST
SEPTEMBER | UNIT II Photosynthesis: Pigments, Light harvesting complexes, Absorption and action spectra, Enhancement effect, Concept of two photosystems, Z- scheme, Photophosphorylation, | Photosystem, red drop,
Z-scheme, light
reaction, cyclic and
non-cyclic ETC,
synthesis of ATP | PPT, Diagrams,
Lecture,
Experiential
learning,
YouTube videos | | | | | | Calvin cycle, C ₄ pathway, | Dark reaction, | PPT, Diagrams, | | | | | * | |---| | | | | | | CAM plants, Photorespiration | reduction of CO ₂ , C ₂ cycle | Lecture | Compare photosynthesis | | |-------------------------|---|--|---|-------------------------------------|---| | | Respiration: ATP-the biological energy currency, Aerobic and anaerobic respiration, Kreb's cycle, Electron transport mechanism (chemi-osmotic theory), Oxidative phosphorylation, Pentose phosphate pathway | Glycolysis, TCA cycle,
phosphorylation, HMP
pathway | PPT, Diagrams,
Lecture, group
discussion | and respiration | | | SEPTEMBER
- NOVEMBER | UNIT III Mineral nutrition: Essential macro- and micro-elements, their role, Deficiency and toxicity symptoms | Macro- and micro-
elements, role in plants | Assignment,
quiz, YouTube
Video | Explain the process of | | | | Nitrogen metabolism: Biology of nitrogen fixation, Importance of nitrate reductase and its regulation, Ammonia assimilation. | Nitrate reduction,
symbiotic N ₂ fixation,
diazotrophs,
leghaemoglobin,
GOGAT pathway | Diagrams,
Lecture, PPT | nitrogen and
lipid
metabolism | | | | Lipid metabolism: Structure
and function of lipids, Fatty
acid biosynthesis, | Lipids, fats, glyoxylate cycle | Blended
learning,
Diagrams,
Lecture, PPT | | PRINCIPAL
SOPHIA GIRLS' COLLEGE | | Head | β-oxidation, Storage and mobilization of fatty acids. | | | | PRINCIPAL
SOPHIA GIRLS' COLLEGE
(AUTONOMOUS)
AJMER | Department of Bottony Sophia Girls' College (Autonomous), Aimer #### B.Sc. III (SEMESTER V) ### PLANT BIOCHEMISTRY (PAPER I) (BOT-501- B) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30(20 Ext;10 Int) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |--------------------|--|--|--|--|--|--| | JULY –
AUGUST | UNIT I Basics of enzymology: Nomenclature, Classification, Characteristics, Concept of holoenzyme, apoenzyme, coenzyme and cofactors | Catalyst, specificity, classification, coenzyme, | PPT, Group
discussion,
Lecture, YouTube
videos, CEC
videos, MCQs | Understand the advanced concepts of enzymes as | Knowledge Based -What is inulin? -Define acid number. Understanding Based | Knowledge40
Understanding-40
Higher Order-20 | | | Mechanism of action, Enzyme kinetics, Michaelis-Menten equation and its significance, Lineweaver-Burk equation | Activation energy, K _m value | PPT, Pdf notes,
Lecture, YouTube
videos, MCQs | drivers of living
systems including
catalysis
mechanisms and
kinetics of | -Summarize the mechanism of enzyme actionExplain storage polysaccharides. | | | | Regulation of enzyme activity,
Enzyme inhibition | Allosteric enzymes,
Competitive, non-
competitive and
uncompetitive
inhibition | PPT, Pdf notes,
Lecture, MCQs | enzymes as
affected various
types of inhibitors | Higher Order Thinking Skills Based -Discuss GS- | | | AUGUST - SEPTEMBER | UNIT II Carbohydrates: Classification, Structure and functions of monosaccharides (glucose, fructose); Disaccharides (sucrose, | Types of
carbohydrates,
Functions of
polysaccharides | learning | Relate the properties of macromolecules, | GOGAT systemDescribe the function of alkaloids in plants. | | | ************************************** | 1 | * | | |--|---|----|------| | | | ŧ. | | | NELY | - | W | 1004 | | | maltose, lactose), Oligosaccharides
and polysaccharides (structural-
cellulose, hemicelluloses, pectin,
chitin, mucilage; storage – starch,
inulin) | | - | their cellular
activities and
biological
responses | | |-------------------------|---|--|--|---|--| | | Proteins: Structure; primary, secondary, tertiary and quaternary, Simple and conjugated proteins, Synthesis of amino acids by reductive amination, GS-GOGAT system and transamination | Components and types of proteins, amino acid synthesis | PPT, Pdf notes,
Lecture, YouTube
videos,
Experiential
learning | 2 | | | SEPTEMBER
- NOVEMBER | UNIT III Lipids: Classification, Structure, Occurrence and biological functions of lipids, Nomenclature and properties of fatty acids and triglycerides, Saponification number, Acid number | Characteristics,
structure and function
of lipids, | PPT, Pdf notes,
Lecture, YouTube
videos,
Experiential
learning | Identify the characteristics and significance | - | | Head Stan | Secondary metabolites: Structure
and functions of secondary
metabolites: Alkaloids and tannins,
Flavonoids, Cardiac glycosides
and Anthocyanins | Types and significance of secondary metabolites | PPT, Pdf notes,
Lecture, YouTube
videos,
Experiential
learning | of secondary
metabolites and
lipids | PRINCIPAL SOPHIA GIRLS' COLLEGI (AUTONOMOUS) | (Autonomous), Ajmer #### SOPHIA GIRLS' COLLEGE, AJMER (AUTONOMOUS) B.Sc. I (SEMESTER II) #### CELL BIOLOGY (PAPER II) (BOT 202) Max. Marks: 75 (50Ext; 25 Int) . Min. Marks: 30 (20 Ext;10 Int) Credit: 03 | SEM I
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|---|--|---|---|---|---------------------------------| | DECEMBER-
JANUARY | UNIT I Structure of Prokaryotic and Eukaryotic cell | Prokaryotes,
Eukaryotes, Cell
structure | Flipped
classroom,
Group
discussion,
Lecture | Illustrate structure and function of | Knowledge Based -Recall equatorial plateWhat is nullisomy? | Knowledge60
Understanding-30 | | | The cell envelopes: structure
and function of Plasma
membrane and Cell wall | Fluid mosaic model,
layers of cell wall | Assignment,
Blended
learning,
Lecture,
Diagrams | cell and cell
organelles | Understanding Based -Prepare a flow chart of stages of meiosisDifferentiate centromere and | Higher Order-10 | | | Structure and function of cell
organelles: Golgi body,
Endoplasmic reticulum,
Peroxisome, Vacuole,
Mitochondria, Chloroplast,
Ribosome and Centriole | Processing and packaging of proteins, microbodies, respiration, photosynthesis | Blended
learning, Group
discussion, PPT,
Lecture, Quiz | | Higher Order Thinking Skills Based -Assess the role of ER in MusclesCompare the types of DNA. | | | FEBRUARY | UNIT II Nucleus: Structure and function of Nucleus and Nucleolus | Nuclear pore,
nucleoplasm,
chromatin, nuclear
lamina | Diagrams,
Assignment,
Practice
questions | Describe
chromosome
organization
and
chromosome | | | #### COURSE PLAN / BOT / 2022-23 | | | | | | alterations | | | |-------------------|------------------------------------|---|---|---|---|-------------|--| | | | Chromosome organisation: Structure, Euchromatin and Heterochromatin | chromomere, | Diagrams,
PPT, Lecture,
Blended
learning | - | | | | | | Chromosomal alterations: Structural changes in Chromosomes (Deletion, Duplication, Translocation and Inversion), Numerical Changes in Chromosomes: [Aneuploidy (Monosomy, Nullisomy, Trisomy, and Tetrasomy), Euploidy (Monoploidy and Polyploidy)] | Deletion, Duplication, Translocation and Inversion, aneuploidy, euploidy | PPT, Diagrams,
Lecture,
Assignment | | | | | | MARCH | UNIT III DNA: Structure, Types (A, B, C and Z), Replication and DNA-protein interaction (Nucleosome Model) | Nucleoside,
nucleotide, double
helix, semi-
consevative, histone
core | Flipped
classroom, PPT,
Diagrams,
Lecture | Correlate DNA structure, cell cycle and cell division | | | | Ja | duy | Genetic code, Satellite and
Repetitive DNA | Triplet codon,
properties of genetic
code, repetitive DNA | Group
discussion,
Lecture, Quiz | | Sul | Parl | | artmer
phia Gi | ad
it of Botany
its' College | Cell cycle: Steps, Regulation and control Cell division: Mitosis and Meiosis, Significance. | Interphase, G ₁ , S, G ₂ ,
M phase, CDKs,
prophase, metaphase,
anaphase, telophase | Flipped
classroom,
Lecture,
Experiential
learning | | \$
AUTON | CIPAL
LS' COLLEGE
DOMOUS)
MER | # B.Sc. II (SEMESTER IV) REPRODUCTION IN FLOWERING PLANTS (PAPER II) (BOT-402) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30 (20 Ext;10 Int) Credit: 03 | SEM III
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks Weightage | | |----------------------|--|--|--|---|--|---------------------------------|--| | DECEMBER-
JANUARY | UNIT I Flower: Structure, Types of anthers and pistil | Polyandrous,
Monoadelphous,
syngenesious, superior,
inferior, unilocular | Flipped
classroom,
Diagrams,
Demonstration,
Lecture | Compare the | Knowledge Based -What is scarification? -Name the types | Knowledge50
Understanding-35 | | | | Male gametophyte: Structure
of anther, Microsporogenesis,
Role of tapetum, Pollen
germination and growth of
pollen tube. | Monothecous,
dithecous, microspore,
pollen tetrads | Blended
learning,
Diagrams,
Permanent slide
Lecture | structure and
development of
male and female
gametophyte | of pollination. <u>Understanding</u> <u>Based</u> -Explain parthenocarpyDescribe | Higher Order-15 | | | | Female gametophyte: Structure and types of ovule, Megasporogenesis, Organisation of embryo sac | Orthotropous,
anatropous, megaspore,
polygonum type,
synergids | Group
discussion,
Diagrams,
Permanent slide,
Lecture | * *** | grafting. Higher Order Thinking Skills Based | | | | FEBRUARY | UNIT II Types of pollination, Pollen- pistil interaction | Self and cross
pollination, herkogamy,
heterostyly,
ornithophilly, exine,
stigma | Flipped
classroom,
Assignment,
Diagrams,
Lecture | pollination to
embryogenesis | -Illustrate the types of dry fruitsSummarize double | | | | | Self incompatibility, Double fertilization | GSI, SSI, recognition-
rejection, syngamy,
triple fusion | Blended
learning,
Diagrams,
Lecture, group | | fertilization. | | | | | Endosperm, Embryogenesis | Nuclear, cellular,
helobial endosperm,
proembryo | discussion PPT, Diagrams, Lecture, quiz | | | | |-------|--|--|---|---|---|---| | MARCH | UNIT III Methods of Vegetative propagation | Natural, artificial, cutting, layering, grafting | Blended
learning,
Assignment,
group discussion | Understand the concept of latent life in plants | ¥ | | | | Latent life-Dormancy: Importance and types of seed dormancy, overcoming seed dormancy. | Primary and secondary
dormancy,
stratification, pre-
chilling, ripening | PPT, Lecture,
quiz | | | | | | Parthenocarpy, Types of fruits | Caryopsis, capsule,
lomentum, berry, drupe,
cremocarp | PPT, Diagrams,
Lecture,
specimens | | | y | Head Department of Botany Sophia Girls' College (Autonomous), Ajmer PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS) COURSE_PLAN_2022-23_DR_SANDHYA ## B.Sc. III (SEMESTER VI) # GENETICS AND BIOTECHNOLOGY OF PLANTS (PAPER II) (BOT-602) Max. Marks: 75 (50Ext; 25 Int) Min. Marks: 30 (20 Ext;10 Int) Credit: 03 | SEM V
Month | UNIT/TOPIC | Concepts/facts | Teaching
Pedagogy | Learning
Outcomes | Questions | Marks
Weightage
(%) | |----------------------|--|--|---|---|---|--| | DECEMBER-
JANUARY | UNIT I Genetic inheritance: Mendelism, Laws of segregation and independent assortment | Gene, dominant,
recessive, allele,
inheritance | Flipped
classroom,
Lecture,
numerical, group
discussion | Deduce how
genes function
and how
characters are | Knowledge Based -Name the tools of rDNA technologyWrite the full form of PCR. Understanding Based -Differentiate | Knowledge40
Understanding-40
Higher Order-20 | | | Linkage and linkage mapping,
Allelic and non-allelic
interactions | Linked genes, test
cross, back cross,
genotype, phenotype | PPT, Lecture,
numerical | inherited from
one generation
to the next | | | | | Gene expression: Transfer of genetic information-transcription, translation, Regulation of gene expression in prokaryotes and eukaryotes | Central dogma,
initiation, elongation,
termination,
attenuation, anti-
termination | Blended
learning,
YouTube videos,
Lecture, group
discussion | | cDNA library & genomic libraryDescribe attenuation. Higher Order Thinking Skills | * , | | FEBRUARY | UNIT II Genetic variations: Mutations-spontaneous and induced, DNA repair | Mutagen, transition,
transversion, base
analogues, mismatch
repair | Assignment,
PPT, Lecture,
diagrams | Analyze the | Based -Assess the importance of GM cropsExplain somatic hybridization. | | | | Genetic engineering: Tools and techniques of recombinant | rDNA, vector, marker
gene, plasmid, phage
cDNA, | PPT, YouTube
videos, Lecture,
diagrams, group | biotechnological
procedures for
modifying | | | #### COURSE PLAN / BOT / 2022-23 | | DNA technology, Cloning
vectors, Genomic and cDNA
library, Polymerase Chain
Reaction | | discussion | living
organisms
according to
human purposes | | |-------|---|---|---|---|-------| | MARCH | UNIT III Biotechnology: Definition, Basic aspects of plant tissue culture, Somatic hybridization- protoplast isolation, fusion and culture | Totipotency, culture,
nutrient medium,
sterilization, aseptic,
protoplast, somatic
hybrid, cybrid | Blended
learning,
Diagrams,
Lecture, group
discussion | Understand
basic aspects of
plant tissue
culture | | | | Biology of Agrobacterium,
Vectors for gene delivery and
vectorless gene transfer | Ti plasmid, Ri plasmid,
T-DNA, opines,
electroporation, particle
gun delivery | PPT, Diagrams,
Lecture, group
discussion | culture | | | | Marker and reporter genes,
Salient achievements in crop
biotechnology | Selectable and scorable
marker, meristem
culture, haploid
culture,herbicide
resistant | PPT, Lecture,
assignment | 2
9 |
- | Head Department of Botany Sophia Girls' College (Autonomous), Ajmer PRINCIPAL SOPHIA GIRLS' COLLEGE (AUTONOMOUS)